US
Find the Resources You Need
Clear Search/Filters

Publications

  • PCR
    • Real-Time Quantitative PCR
      • SYBR Green Detection
        • DNA
          The Effects of Bisphenol A on the Expression of microRNA-21 and miR-21 Mediated Pathways Including Epigenetic Regulation and Apoptosis in Bovine Granulosa Cells
          Reem Sabry - 2023
          Abstract
          This research investigates the mechanism of action of microRNA-21 (miR-21) in bovine oocytes and granulosa cells exposed to the endocrine-disrupting compound, bisphenol A (BPA). miR-21 has been extensively reported as one of the microRNAs most affected by BPA, exhibiting significant upregulation in bovine oocytes and granulosa cells. Therefore, miR-21 serves as a promising candidate for further evaluation in the context of BPA-induced reproductive toxicity. The involvement of miR-21 in reproduction encompasses diverse pathways, including wellestablished as well as novel and less elucidated processes. Notably, miR-21 is known to regulate apoptosis, a form of programmed cell death, which is also a recognized effect of BPA in various cell types, including granulosa cells. Consequently, this study aimed to investigate a novel interplay between miR-21 and other epigenetic regulatory mechanisms. DNA methylation, a critical epigenetic mechanism, can be modulated by microRNAs, although its specific role in the reproductive context remains largely unexplored. Hence, elucidating the regulation of DNA methylation by miR-21 in bovine oocytes and granulosa cells constituted a parallel focus of this research. To comprehensively examine both established and novel mechanisms involving miR-21, it was crucial to establish a functional knockdown model for miR-21, thereby enabling further investigation of these pathways. Thus, the primary objective of this research was to establish an efficient knockdown of miR-21 in bovine granulosa cells and oocytes. Chapter 2 of this thesis iii outlines the establishment of a functional miR-21 knockdown model in bovine granulosa cells, while Chapter 3 utilizes this model to investigate the role of miR-21 in BPA-induced apoptosis. Chapter 4 expands the investigation to both the knockdown model and oocytes, examining miR21's involvement in BPA-induced aberrant DNA methylation. Overall, this study demonstrates that BPA induces apoptosis and aberrant DNA methylation in bovine oocytes and granulosa cells, while providing mechanistic insights into the independent and dependent effects of BPA on apoptosis and DNA methylation, respectively, through miR-21 signaling. By shedding light on the epigenetic mechanisms of action employed by BPA to induce reproductive toxicity, this research lays the groundwork for a better understanding of the underlying processes.
          Arc1: a regulator of triglyceride homeostasis in male Drosophila
          Samuel D. Swope - 2023
          Abstract
          Achieving metabolic homeostasis is necessary for survival, and many genes are required to control organismal metabolism. A genetic screen in Drosophila larvae identified putative fat storage genes including Arc1. Arc1 has been shown to act in neurons to regulate larval lipid storage; however, whether Arc1 functions to regulate adult metabolism is unknown. Arc1 esm18 males store more fat than controls while both groups eat similar amounts. Arc1 esm18 flies express more brummer lipase and less of the glycolytic enzyme triose phosphate isomerase, which may contribute to excess fat observed in these mutants. These results suggest that Arc1 regulates adult Drosophila lipid homeostasis.
      • Probe-based Detection
        Rainbow smelt (Osmerus mordax) influence on walleye (Sander vitreus) recruitment decline: mtDNA evidence supporting the predation hypothesis
        Jesse M. Lepak - 2023
        Abstract
        Rainbow smelt (Osmerus mordax) have been introduced widely but are associated with declines in walleye (Sander vitreus) recruitment. A primary hypothesis for these declines is that O. mordax consume larval S. vitreus. We confirmed overlapping spatial–temporal distributions of larval S. vitreus and O. mordax in our study system and used mtDNA analyses to determine if O. mordax stomach contents contained S. vitreus. Approximately 20% of O. mordax composite stomach samples were considered positive for S. vitreus consumption. These findings support the predation hypothesis and have S. vitreus management/stocking implications.
        A validated and optimized environmental DNA and RNA assay to detect Arctic grayling (Thymallus arcticus)
        Melissa D. Misutka - 2023
        Abstract
        Arctic grayling (Thymallus arcticus) is a salmonid fish of significant conservation value. However, conservation efforts are hindered by a lack of fundamental information regarding details such as current population distribution, migratory patterns, and natal habitats. In the current study, we designed, optimized, and field- and laboratoryvalidated an environmental DNA (eDNA) and environmental RNA (eRNA) assay for Arctic grayling biomonitoring. Using an in silico approach, a robust species-specific eDNA assay was generated, and filtering and extraction protocols were optimized for maximal eDNA yield. A Preserve, Precipitate, Lyse, Precipitate, and Purify (PPLPP) extraction method generated 70-fold higher eDNA yields than a column-based approach. Species-specificity relative to co-occurring salmonid fish was validated, and no significant amplification was noted for rainbow trout, brook trout, or mountain whitefish. Shedding rates of eDNA were around eight to nine times higher than those of eRNA, although the two types of nucleic acids decayed at similar rates. Shedding and decay rates were subsequently used to build detection probability models that account for pool size and water exchange rates. These data indicate that eDNA and eRNA are detectable in pools up to 32,500 m3 in volume and with water flow of less than 0.5 m3 s −1 when an Arctic grayling is present. This knowledge can be implemented when designing field sampling strategies. Finally, the assay successfully amplified Arctic grayling eDNA from field-collected samples, with signal strength indicating preferred Arctic grayling habitat or conditions that favored the concentration and retention of eDNA.
        Comparison of DNA concentration and bacterial pathogen PCR detection when using two DNA extraction kits for nasopharyngeal/oropharyngeal samples
        Dam Khan - 2023
        Abstract
        Introduction Several important human pathogens that cause life-threatening infections are asymptomatically carried in the Nasopharynx/Oropharynx (NP/OP). DNA extraction is a prerequisite for most culture-independent techniques used to identify pathogens in the NP/OP. However, components of DNA extraction kits differ thereby giving rise to differences in performance. We compared the DNA concentration and the detection of three pathogens in the NP/OP using the discontinued DNeasy PowerSoil Kit (Kit DP) and the DNeasy PowerLyzer PowerSoil Kit (Kit DPP). Methods DNA was extracted from the same set of 103 NP/OP samples using the two kits. DNA concentration was measured using the Qubit 2.0 Fluorometer. Real-time Polymerase Chain reaction (RT-PCR) was done using the QuantStudio 7-flex system to detect three pathogens: S. pneumoniae, H. influenzae, and N. meningitidis. Bland-Altman statistics and plots were used to determine the threshold cycle (Ct) value agreement for the two kits. Results The average DNA concentration from kit DPP was higher than Kit DP; 1235.6 ng/ml (SD = 1368.3) vs 884.9 ng/ml (SD = 1095.3), p = 0.002. Using a Ct value cutoff of 40 for positivity, the concordance for the presence of S. pneumoniae was 82% (84/102); 94%(96/103) for N. meningitidis and 92%(95/103) for H. influenzae. Kit DP proportionately resulted in higher Ct values than Kit DPP for all pathogens. The Ct value bias of measurement for S. pneumoniae was +2.4 (95% CI, 1.9–3.0), +1.4 (95% CI, 0.9–1.9) for N. meningitidis and +1.4 (95% CI, 0.2–2.5) for H. influenzae. Conclusion The higher DNA concentration obtained using kit DPP could increase the chances of recovering low abundant bacteria. The PCR results were reproducible for more than 90% of the samples for the gram-negative H. influenzae and N. meningitidis. Ct value variations of the kits must be taken into consideration when comparing studies that have used the two kits.
        Neurexin-3 subsynaptic densities are spatially distinct from Neurexin-1 and essential for excitatory synapse nanoscale organization in the hippocampus
        Brian A Lloyd - 2023
        Abstract
        Proteins critical for synaptic transmission are non-uniformly distributed and assembled into regions of high density called subsynaptic densities (SSDs) that transsynaptically align in nanocolumns. Neurexin-1 and neurexin-3 are essential presynaptic adhesion molecules that non-redundantly control NMDAR- and AMPAR-mediated synaptic transmission, respectively, via transsynaptic interactions with distinct postsynaptic ligands. Despite their functional relevance, fundamental questions regarding the nanoscale properties of individual neurexins, their influence on the subsynaptic organization of excitatory synapses and the mechanisms controlling how individual neurexins engage in precise transsynaptic interactions are unknown. Using Double Helix 3D dSTORM and neurexin mouse models, we identify neurexin-3 as a critical presynaptic adhesion molecule that regulates excitatory synapse nano-organization in hippocampus. Furthermore, endogenous neurexin-1 and neurexin-3 form discrete and non-overlapping SSDs that are enriched opposite their postsynaptic ligands. Thus, the nanoscale organization of neurexin-1 and neurexin-3 may explain how individual neurexins signal in parallel to govern different synaptic properties.
        Identification of Tomato mottle mosaic virus in historic seed accessions originating from France, the Netherlands and Spain, indicates a wider presence before its first description
        Ruben Schoen - 2023
        Abstract
        Tomato mottle mosaic virus (ToMMV) is a tobamovirus found in a Solanum lycopersicum sample collected in Mexico in 2009. To assess the possible presence of ToMMV in Europe, accessions from a historic seed collection were tested by real-time RT-PCR and Illumina sequencing. ToMMV was identified in historical seed accessions produced in France, the Netherlands and Spain. Three different near complete genome sequences were obtained, each corresponding to the country in which the seeds had been produced. Positive samples from France and Spain could be related to the same production location and year, respectively, while the identical genome sequences from the Netherlands were obtained from samples produced in different locations and years between 1981 and 2007. The latter could be due to the fact that the Dutch seed accessions had been repacked in the past at the same location and time as accessions with a relatively high virus load from 2007. This indicates that possibly only the seeds from 2007 originated from ToMMV-infected plants, while the detection of ToMMV in the older seed accessions resulted from cross contamination. This data shows that ToMMV has been around in Europe before its first description and is possibly more widespread than currently known.
        Sperm DNA methylation alterations from cannabis extract exposure are evident in offspring
        Rose Schrott - 2022
        Abstract
        Background Cannabis legalization is expanding and men are the predominant users. We have limited knowledge about how cannabis impacts sperm and whether the effects are heritable. Results Whole genome bisulfite sequencing (WGBS) data were generated for sperm of rats exposed to: (1) cannabis extract (CE) for 28 days, then 56 days of vehicle only (~ one spermatogenic cycle); (2) vehicle for 56 days, then 28 days of CE; or (3) vehicle only. Males were then mated with drug-naïve females to produce F1 offspring from which heart, brain, and sperm tissues underwent analyses. There were 3321 nominally significant differentially methylated CpGs in F0 sperm identified via WGBS with select methylation changes validated via bisulfite pyrosequencing. Significant methylation changes validated in F0 sperm of the exposed males at the gene 2-Phosphoxylose Phosphatase 1 (Pxylp1) were also detectable in their F1 sperm but not in controls. Changes validated in exposed F0 sperm at Metastasis Suppressor 1-Like Protein (Mtss1l) were also present in F1 hippocampal and nucleus accumbens (NAc) of the exposed group compared to controls. For Mtss1l, a significant sex-specific relationship between DNA methylation and gene expression was demonstrated in the F1 NAc. Phenotypically, rats born to CSE-exposed fathers exhibited significant cardiomegaly relative to those born to control fathers. Conclusions This is the first characterization of the effect of cannabis exposure on the entirety of the rat sperm methylome. We identified CE-associated methylation changes across the sperm methylome, some of which persisted despite a “washout” period. Select methylation changes validated via bisulfite pyrosequencing, and genes associated with methylation changes were involved in early developmental processes. Preconception CE exposure is associated with detectable changes in offspring DNA methylation that are functionally related to changes in gene expression and cardiomegaly. These results support that paternal preconception exposure to cannabis can influence offspring outcomes.
        TIRAP/Mal Positively Regulates TLR8‐Mediated Signaling via IRF5 in Human Cells
        Kaja Elisabeth Nilsen - 2022
        Abstract
        Toll‐like receptor 8 (TLR8) recognizes single‐stranded RNA of viral and bacterial origin as well as mediates the secretion of pro‐inflammatory cytokines and type I interferons by human monocytes and macrophages. TLR8, as other endosomal TLRs, utilizes the MyD88 adaptor protein for initiation of signaling from endosomes. Here, we addressed the potential role of the Toll‐inter‐ leukin 1 receptor domain‐containing adaptor protein (TIRAP) in the regulation of TLR8 signaling in human primary monocyte‐derived macrophages (MDMs). To accomplish this, we performed TIRAP gene silencing, followed by the stimulation of cells with synthetic ligands or live bacteria. Cytokine‐gene expression and secretion were analyzed by quantitative PCR or Bioplex assays, re‐ spectively, while nuclear translocation of transcription factors was addressed by immunofluores‐ cence and imaging, as well as by cell fractionation and immunoblotting. Immunoprecipitation and Akt inhibitors were also used to dissect the signaling mechanisms. Overall, we show that TIRAP is recruited to the TLR8 Myddosome signaling complex, where TIRAP contributes to Akt‐kinase acti‐ vation and the nuclear translocation of interferon regulatory factor 5 (IRF5). Recruitment of TIRAP to the TLR8 signaling complex promotes the expression and secretion of the IRF5‐dependent cyto‐ kines IFNβ and IL‐12p70 as well as, to a lesser degree, TNF. These findings reveal a new and un‐ conventional role of TIRAP in innate immune defense
        Point-of-Care Platform for Rapid Multiplexed Detection of SARS-CoV-2 Variants and Respiratory Pathogens
        Alexander Y. Trick - 2022
        Abstract
        The rise of highly transmissible SARS-CoV-2 variants brings new challenges and concerns with vaccine efficacy, diagnostic sensitivity, and public health responses to end the pandemic. Widespread detection of variants is critical to inform policy decisions to mitigate further spread, and postpandemic multiplexed screening of respiratory viruses will be necessary to properly manage patients presenting with similar respiratory symptoms. In this work, a portable, magnetofluidic cartridge platform for automated polymerase chain reaction testing in <30 min is developed. Cartridges are designed for multiplexed detection of SARS-CoV-2 with either identification of variant mutations or screening for Influenza A and B. Moreover, the platform can perform identification of B.1.1.7 and B.1.351 variants and the multiplexed SARS-CoV-2/Influenza assay using archived clinical nasopharyngeal swab eluates and saliva samples. This work illustrates a path toward affordable and immediate testing with potential to aid surveillance of viral variants and inform patient treatment.
        A Sensitive, Portable Microfluidic Device for SARS-CoV-2 Detection from Self-Collected Saliva
        Jianing Yang - 2021
        Abstract
        Since the outbreak of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic in December 2019, the spread of SARS-CoV2 infection has been escalating rapidly around the world. In order to provide more timely access to medical intervention, including diagnostic tests and medical treatment, the FDA authorized multiple test protocols for diagnostic tests from nasopharyngeal swab, saliva, urine, bronchoalveolar lavage and fecal samples. The traditional diagnostic tests for this novel coronavirus 2019 require standard processes of viral RNA isolation, reverse transcription of RNA to cDNA, then real-time quantitative PCR with the RNA templates extracted from the patient samples. Recently, many reports have demonstrated a direct detection of SARS-Co-V2 genomic material from saliva samples without any RNA isolation step. To make the rapid detection of SARS-Co-V2 infection more accessible, a point-of-care type device was developed for SARS-CoV-2 detection. Herein, we report a portable microfluidic-based integrated detectionanalysis system for SARS-CoV-2 nucleic acids detection directly from saliva samples. The saliva cartridge is self-contained and capable of microfluidic evaluation of saliva, from heating, mixing with the primers to multiplex real-time quantitative polymerase chain reaction, detecting SARSCoV- 2 with different primer sets and internal control. The approach has a detection sensitivity of 1000 copies/mL of SARS-CoV-2 RNA or virus, with consistency and automation, from saliva sample-in to result-out.
        RIPK1 or RIPK3 deletion prevents progressive neuronal cell death and improves memory function after traumatic brain injury
        Antonia Clarissa Wehn - 2021
        Abstract
        Traumatic brain injury (TBI) causes acute and subacute tissue damage, but is also associated with chronic inflammation and progressive loss of brain tissue months and years after the initial event. The trigger and the subsequent molecular mechanisms causing chronic brain injury after TBI are not well understood. The aim of the current study was therefore to investigate the hypothesis that necroptosis, a form a programmed cell death mediated by the interaction of Receptor Interacting Protein Kinases (RIPK) 1 and 3, is involved in this process. Neuron-specific RIPK1- or RIPK3-deficient mice and their wild-type littermates were subjected to experimental TBI by controlled cortical impact. Posttraumatic brain damage and functional outcome were assessed longitudinally by repetitive magnetic resonance imaging (MRI) and behavioral tests (beam walk, Barnes maze, and tail suspension), respectively, for up to three months after injury. Thereafter, brains were investigated by immunohistochemistry for the necroptotic marker phosphorylated mixed lineage kinase like protein(pMLKL) and activation of astrocytes and microglia. WT mice showed progressive chronic brain damage in cortex and hippocampus and increased levels of pMLKL after TBI. Chronic brain damage occurred almost exclusively in areas with iron deposits and was significantly reduced in RIPK1- or RIPK3-deficient mice by up to 80%. Neuroprotection was accompanied by a reduction of astrocyte and microglia activation and improved memory function. The data of the current study suggest that progressive chronic brain damage and cognitive decline after TBI depend on the expression of RIPK1/3 in neurons. Hence, inhibition of necroptosis signaling may represent a novel therapeutic target for the prevention of chronic post-traumatic brain damage.
      • RNA
        Neurexin-3 subsynaptic densities are spatially distinct from Neurexin-1 and essential for excitatory synapse nanoscale organization in the hippocampus
        Brian A Lloyd - 2023
        Abstract
        Proteins critical for synaptic transmission are non-uniformly distributed and assembled into regions of high density called subsynaptic densities (SSDs) that transsynaptically align in nanocolumns. Neurexin-1 and neurexin-3 are essential presynaptic adhesion molecules that non-redundantly control NMDAR- and AMPAR-mediated synaptic transmission, respectively, via transsynaptic interactions with distinct postsynaptic ligands. Despite their functional relevance, fundamental questions regarding the nanoscale properties of individual neurexins, their influence on the subsynaptic organization of excitatory synapses and the mechanisms controlling how individual neurexins engage in precise transsynaptic interactions are unknown. Using Double Helix 3D dSTORM and neurexin mouse models, we identify neurexin-3 as a critical presynaptic adhesion molecule that regulates excitatory synapse nano-organization in hippocampus. Furthermore, endogenous neurexin-1 and neurexin-3 form discrete and non-overlapping SSDs that are enriched opposite their postsynaptic ligands. Thus, the nanoscale organization of neurexin-1 and neurexin-3 may explain how individual neurexins signal in parallel to govern different synaptic properties.
        Identification of Tomato mottle mosaic virus in historic seed accessions originating from France, the Netherlands and Spain, indicates a wider presence before its first description
        Ruben Schoen - 2023
        Abstract
        Tomato mottle mosaic virus (ToMMV) is a tobamovirus found in a Solanum lycopersicum sample collected in Mexico in 2009. To assess the possible presence of ToMMV in Europe, accessions from a historic seed collection were tested by real-time RT-PCR and Illumina sequencing. ToMMV was identified in historical seed accessions produced in France, the Netherlands and Spain. Three different near complete genome sequences were obtained, each corresponding to the country in which the seeds had been produced. Positive samples from France and Spain could be related to the same production location and year, respectively, while the identical genome sequences from the Netherlands were obtained from samples produced in different locations and years between 1981 and 2007. The latter could be due to the fact that the Dutch seed accessions had been repacked in the past at the same location and time as accessions with a relatively high virus load from 2007. This indicates that possibly only the seeds from 2007 originated from ToMMV-infected plants, while the detection of ToMMV in the older seed accessions resulted from cross contamination. This data shows that ToMMV has been around in Europe before its first description and is possibly more widespread than currently known.
        Increased Acetylcholinesterase expression in Bumble Bees During Neonicotinoid-Coated Corn sowing
        Olivier samson-Robert - 2015
        Abstract
        While honey bee exposure to systemic insecticides has received much attention, impacts on wild pollinators have not been as widely studied. Neonicotinoids have been shown to increase acetylcholinesterase (AChe) activity in honey bees at sublethal doses. High AChe levels may therefore act as a biomarker of exposure to neonicotinoids. this two-year study focused on establishing whether bumble bees living and foraging in agricultural areas using neonicotinoid crop protection show early biochemical signs of intoxication. Bumble bee colonies (Bombus impatiens) were placed in two different agricultural cropping areas: 1) control (≥3 km from fields planted with neonicotinoid-treated seeds) or 2) exposed (within 500 m of fields planted with neonicotinoidtreated seeds), and maintained for the duration of corn sowing. As determined by Real time qpCR, AChE mRNA expression was initially significantly higher in bumble bees from exposed sites, then decreased throughout the planting season to reach a similar endpoint to that of bumble bees from control sites. These findings suggest that exposure to neonicotinoid seed coating particles during the planting season can alter bumble bee neuronal activity. To our knowledge, this is the first study to report in situ that bumble bees living in agricultural areas exhibit signs of neonicotinoid intoxication.
        Sperm DNA methylation alterations from cannabis extract exposure are evident in offspring
        Rose Schrott - 2022
        Abstract
        Background Cannabis legalization is expanding and men are the predominant users. We have limited knowledge about how cannabis impacts sperm and whether the effects are heritable. Results Whole genome bisulfite sequencing (WGBS) data were generated for sperm of rats exposed to: (1) cannabis extract (CE) for 28 days, then 56 days of vehicle only (~ one spermatogenic cycle); (2) vehicle for 56 days, then 28 days of CE; or (3) vehicle only. Males were then mated with drug-naïve females to produce F1 offspring from which heart, brain, and sperm tissues underwent analyses. There were 3321 nominally significant differentially methylated CpGs in F0 sperm identified via WGBS with select methylation changes validated via bisulfite pyrosequencing. Significant methylation changes validated in F0 sperm of the exposed males at the gene 2-Phosphoxylose Phosphatase 1 (Pxylp1) were also detectable in their F1 sperm but not in controls. Changes validated in exposed F0 sperm at Metastasis Suppressor 1-Like Protein (Mtss1l) were also present in F1 hippocampal and nucleus accumbens (NAc) of the exposed group compared to controls. For Mtss1l, a significant sex-specific relationship between DNA methylation and gene expression was demonstrated in the F1 NAc. Phenotypically, rats born to CSE-exposed fathers exhibited significant cardiomegaly relative to those born to control fathers. Conclusions This is the first characterization of the effect of cannabis exposure on the entirety of the rat sperm methylome. We identified CE-associated methylation changes across the sperm methylome, some of which persisted despite a “washout” period. Select methylation changes validated via bisulfite pyrosequencing, and genes associated with methylation changes were involved in early developmental processes. Preconception CE exposure is associated with detectable changes in offspring DNA methylation that are functionally related to changes in gene expression and cardiomegaly. These results support that paternal preconception exposure to cannabis can influence offspring outcomes.
        Point-of-Care Platform for Rapid Multiplexed Detection of SARS-CoV-2 Variants and Respiratory Pathogens
        Alexander Y. Trick - 2022
        Abstract
        The rise of highly transmissible SARS-CoV-2 variants brings new challenges and concerns with vaccine efficacy, diagnostic sensitivity, and public health responses to end the pandemic. Widespread detection of variants is critical to inform policy decisions to mitigate further spread, and postpandemic multiplexed screening of respiratory viruses will be necessary to properly manage patients presenting with similar respiratory symptoms. In this work, a portable, magnetofluidic cartridge platform for automated polymerase chain reaction testing in <30 min is developed. Cartridges are designed for multiplexed detection of SARS-CoV-2 with either identification of variant mutations or screening for Influenza A and B. Moreover, the platform can perform identification of B.1.1.7 and B.1.351 variants and the multiplexed SARS-CoV-2/Influenza assay using archived clinical nasopharyngeal swab eluates and saliva samples. This work illustrates a path toward affordable and immediate testing with potential to aid surveillance of viral variants and inform patient treatment.
        A Sensitive, Portable Microfluidic Device for SARS-CoV-2 Detection from Self-Collected Saliva
        Jianing Yang - 2021
        Abstract
        Since the outbreak of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic in December 2019, the spread of SARS-CoV2 infection has been escalating rapidly around the world. In order to provide more timely access to medical intervention, including diagnostic tests and medical treatment, the FDA authorized multiple test protocols for diagnostic tests from nasopharyngeal swab, saliva, urine, bronchoalveolar lavage and fecal samples. The traditional diagnostic tests for this novel coronavirus 2019 require standard processes of viral RNA isolation, reverse transcription of RNA to cDNA, then real-time quantitative PCR with the RNA templates extracted from the patient samples. Recently, many reports have demonstrated a direct detection of SARS-Co-V2 genomic material from saliva samples without any RNA isolation step. To make the rapid detection of SARS-Co-V2 infection more accessible, a point-of-care type device was developed for SARS-CoV-2 detection. Herein, we report a portable microfluidic-based integrated detectionanalysis system for SARS-CoV-2 nucleic acids detection directly from saliva samples. The saliva cartridge is self-contained and capable of microfluidic evaluation of saliva, from heating, mixing with the primers to multiplex real-time quantitative polymerase chain reaction, detecting SARSCoV- 2 with different primer sets and internal control. The approach has a detection sensitivity of 1000 copies/mL of SARS-CoV-2 RNA or virus, with consistency and automation, from saliva sample-in to result-out.
        RIPK1 or RIPK3 deletion prevents progressive neuronal cell death and improves memory function after traumatic brain injury
        Antonia Clarissa Wehn - 2021
        Abstract
        Traumatic brain injury (TBI) causes acute and subacute tissue damage, but is also associated with chronic inflammation and progressive loss of brain tissue months and years after the initial event. The trigger and the subsequent molecular mechanisms causing chronic brain injury after TBI are not well understood. The aim of the current study was therefore to investigate the hypothesis that necroptosis, a form a programmed cell death mediated by the interaction of Receptor Interacting Protein Kinases (RIPK) 1 and 3, is involved in this process. Neuron-specific RIPK1- or RIPK3-deficient mice and their wild-type littermates were subjected to experimental TBI by controlled cortical impact. Posttraumatic brain damage and functional outcome were assessed longitudinally by repetitive magnetic resonance imaging (MRI) and behavioral tests (beam walk, Barnes maze, and tail suspension), respectively, for up to three months after injury. Thereafter, brains were investigated by immunohistochemistry for the necroptotic marker phosphorylated mixed lineage kinase like protein(pMLKL) and activation of astrocytes and microglia. WT mice showed progressive chronic brain damage in cortex and hippocampus and increased levels of pMLKL after TBI. Chronic brain damage occurred almost exclusively in areas with iron deposits and was significantly reduced in RIPK1- or RIPK3-deficient mice by up to 80%. Neuroprotection was accompanied by a reduction of astrocyte and microglia activation and improved memory function. The data of the current study suggest that progressive chronic brain damage and cognitive decline after TBI depend on the expression of RIPK1/3 in neurons. Hence, inhibition of necroptosis signaling may represent a novel therapeutic target for the prevention of chronic post-traumatic brain damage.
    • Conventional PCR
      • DNA
        Distribution of large lungworms (Nematoda: Dictyocaulidae) in free-roaming populations of red deer Cervus elaphus (L.) with the description of Dictyocaulus skrjabini n. sp.
        Anna Maria Pyziel - 2023
        Abstract
        Lungworms of the genus Dictyocaulus are causative agents of parasitic bronchitis in domestic and wild ungulates. This study investigates the distribution, morphology and genetic diversity of D. cervi and a new lungworm species, Dictyocaulus skrjabini n. sp. infecting red deer Cervus elaphus, fallow deer Dama dama and moose Alces alces in Poland and Sweden. The study was conducted on 167 red deer from Poland and on the DNA of lungworms derived from seven fallow deer, four red deer, and two moose collected in Sweden. The prevalence of D. cervi and D. skrjabini n. sp. in dissected red deer in Poland was 35.7% and 7.8%, respectively. Moreover, D. skrjabini n. sp. was confirmed molecularly in seven isolates of fallow deer lungworms, and one isolate of red deer lungworms from Sweden. Dictyocaulus skrjabini n. sp. was established based on combination of their distinct molecular and morphological features; these included the length of cephalic vesicle, buccal capsule, buccal capsule wall, distance from anterior extremity to the nerve ring, the width of head, oesophagus, cephalic vesicle, buccal capsule and buccal capsule wall, as well as the dimensions of reproductive organs of male and female. Additionally, molecular analyses revealed 0.9% nucleotide sequence divergence for 1,605 bp SSU rDNA, and 16.5%-17.3% nucleotide sequence divergence for 642 bp mitochondrial cytB between D. skrjabini n. sp. and D. cervi, respectively, and 18.7%-19% between D. skrjabini n. sp. and D. eckerti, which translates into 18.2%-18.7% amino acid sequence divergence between D. skrjabini n. sp. and both lungworms.
        SYPL1 defines a vesicular pathway essential for sperm cytoplasmic droplet formation and male fertility
        Jiali Liu - 2023
        Abstract
        The cytoplasmic droplet is a conserved dilated area of cytoplasm situated at the neck of the sperm flagellum. Viewed as residual cytoplasm inherited from late spermatids, the cytoplasmic droplet contains numerous saccular elements as its key content. However, the origin of these saccules and the function of the cytoplasmic droplet have long been speculative. Here, we identify the molecular origin of these cytoplasmic droplet components by uncovering a vesicle pathway essential for formation and sequestration of saccules within the cytoplasmic droplet. This process is governed by a transmembrane protein SYPL1 and its interaction with VAMP3. Genetic ablation of SYPL1 in mice reveals that SYPL1 dictates the formation and accumulation of saccular elements in the forming cytoplasmic droplet. Derived from the Golgi, SYPL1 vesicles are critical for segregation of key metabolic enzymes within the forming cytoplasmic droplet of late spermatids and epididymal sperm, which are required for sperm development and male fertility. Our results uncover a mechanism to actively form and segregate saccules within the cytoplasmic droplet to promote sperm fertility.
        Fecal Microbial Diversity of Coyotes and Wild Hogs in Texas Panhandle, USA
        Babafela Awosile - 2023
        Abstract
        The ecology of infectious diseases involves wildlife, yet the wildlife interface is often neglected and understudied. Pathogens related to infectious diseases are often maintained within wildlife populations and can spread to livestock and humans. In this study, we explored the fecal microbiome of coyotes and wild hogs in the Texas panhandle using polymerase chain reactions and 16S sequencing methods. The fecal microbiota of coyotes was dominated by members of the phyla Bacteroidetes, Firmicutes, and Proteobacteria. At the genus taxonomic level, Odoribacter, Allobaculum, Coprobacillus, and Alloprevotella were the dominant genera of the core fecal microbiota of coyotes. While for wild hogs, the fecal microbiota was dominated by bacterial members of the phyla Bacteroidetes, Spirochaetes, Firmicutes, and Proteobacteria. Five genera, Treponema, Prevotella, Alloprevotella, Vampirovibrio, and Sphaerochaeta, constitute the most abundant genera of the core microbiota of wild hogs in this study. Functional profile of the microbiota of coyotes and wild hogs identified 13 and 17 human-related diseases that were statistically associated with the fecal microbiota, respectively (p < 0.05). Our study is a unique investigation of the microbiota using free-living wildlife in the Texas Panhandle and contributes to awareness of the role played by gastrointestinal microbiota of wild canids and hogs in infectious disease reservoir and transmission risk. This report will contribute to the lacking information on coyote and wild hog microbial communities by providing insights into their composition and ecology which may likely be different from those of captive species or domesticated animals. This study will contribute to baseline knowledge for future studies on wildlife gut microbiomes.
        TCF-1 Is Required for CD4 T Cell Persistence Functions during AlloImmunity
        Mahinbanu Mammadli - 2023
        Abstract
        The transcription factor T cell factor-1 (TCF-1) is encoded by Tcf7 and plays a significant role in regulating immune responses to cancer and pathogens. TCF-1 plays a central role in CD4 T cell development; however, the biological function of TCF-1 on mature peripheral CD4 T cellmediated alloimmunity is currently unknown. This report reveals that TCF-1 is critical for mature CD4 T cell stemness and their persistence functions. Our data show that mature CD4 T cells from TCF-1 cKO mice did not cause graft versus host disease (GvHD) during allogeneic CD4 T cell transplantation, and donor CD4 T cells did not cause GvHD damage to target organs. For the first time, we showed that TCF-1 regulates CD4 T cell stemness by regulating CD28 expression, which is required for CD4 stemness. Our data showed that TCF-1 regulates CD4 effector and central memory formation. For the first time, we provide evidence that TCF-1 differentially regulates key chemokine and cytokine receptors critical for CD4 T cell migration and inflammation during alloimmunity. Our transcriptomic data uncovered that TCF-1 regulates critical pathways during normal state and alloimmunity. Knowledge acquired from these discoveries will enable us to develop a target-specific approach for treating CD4 T cell-mediated diseases
        FXN gene methylation determines carrier status in Friedreich ataxia
        Christina Lam - 2023
        Abstract
        Background Friedreich ataxia (FRDA) is typically caused by homozygosity for an expanded GAA triplet-repeat (GAA-TRE) in intron 1 of the FXN gene. Some patients are compound heterozygous for the GAA-TRE and another FXN pathogenic variant. Detection of the GAA-TRE in the heterozygous state, occasionally technically challenging, is essential for diagnosing compound heterozygotes and asymptomatic carriers. Objective We explored if the FRDA differentially methylated region (FRDA-DMR) in intron 1, which is hypermethylated in cis with the GAA-TRE, effectively detects heterozygous GAA-TRE. Methods FXN DNA methylation was assayed by targeted bisulfite deep sequencing using the Illumina platform. Results FRDA-DMR methylation effectively identified a cohort of known heterozygous carriers of the GAA-TRE. In an individual with clinical features of FRDA, commercial testing showed a paternally inherited pathogenic FXN initiation codon variant but no GAA-TRE. Methylation in the FRDA-DMR effectively identified the proband, his mother and various maternal relatives as heterozygous carriers of the GAA-TRE, thus confirming the diagnosis of FRDA. Conclusion FXN DNA methylation reliably detects the GAA-TRE in the heterozygous state and offers a robust alternative strategy to diagnose FRDA due to compound heterozygosity and to identify asymptomatic heterozygous carriers of the GAA-TRE.
        Optimization of the 16S rRNA sequencing analysis pipeline for studying in vitro communities of gut commensals
        Arianna I. Celis - 2022
        Abstract
        While microbial communities inhabit a wide variety of complex natural environments, in vitro culturing enables highly controlled conditions and high-throughput interrogation for generating mechanistic insights. In vitro assemblies of gut commensals have recently been introduced as models for the intestinal microbiota, which plays fundamental roles in host health. However, a protocol for 16S rRNA sequencing and analysis of in vitro samples that optimizes financial cost, time/effort, and accuracy/reproducibility has yet to be established. Here, we systematically identify protocol elements that have significant impact, introduce bias, and/or can be simplified. Our results indicate that community diversity and composition are generally unaffected by substantial protocol streamlining. Additionally, we demonstrate that a strictly aerobic halophile is an effective spike-in for estimating absolute abundances in communities of anaerobic gut commensals. This time- and money-saving protocol should accelerate discovery by increasing 16S rRNA data reliability and comparability and through the incorporation of absolute abundance estimates.
  • Next Generation Sequencing (NGS)
    • DNA
      Long-Term Tillage and Crop Rotation Regimes Reshape Soil-Borne Oomycete Communities in Soybean, Corn, and Wheat Production Systems
      Alison Claire Gahagan - 2023
      Abstract
      Soil-borne oomycetes include devastating plant pathogens that cause substantial losses in the agricultural sector. To better manage this important group of pathogens, it is critical to understand how they respond to common agricultural practices, such as tillage and crop rotation. Here, a long-term field experiment was established using a split-plot design with tillage as the main plot factor (conventional tillage (CT) vs. no till (NT), two levels) and rotation as the subplot factor (monocultures of soybean, corn, or wheat, and corn–soybean–wheat rotation, four levels). Post-harvest soil oomycete communities were characterized over three consecutive years (2016–2018) by metabarcoding the Internal Transcribed Spacer 1 (ITS1) region. The community contained 292 amplicon sequence variants (ASVs) and was dominated by Globisporangium spp. (85.1% in abundance, 203 ASV) and Pythium spp. (10.4%, 51 ASV). NT decreased diversity and community compositional structure heterogeneity, while crop rotation only affected the community structure under CT. The interaction effects of tillage and rotation on most oomycetes species accentuated the complexity of managing these pathogens. Soil and crop health represented by soybean seedling vitality was lowest in soils under CT cultivating soybean or corn, while the grain yield of the three crops responded differently to tillage and crop rotation regimes.
      Bacterial microbiome in tropical lichens and the effect of the isolation method on culturable lichen-derived actinobacteria
      Trinset Weeraphan - 2023
      Abstract
      Ten samples of tropical lichens collected from Doi Inthanon, Thailand, were explored for the diversity of their bacterial microbiomes through 16S rRNA-based metagenomics analysis. The five predominant lichen-associated bacteria belonged to the phyla Proteobacteria (31.84%), Planctomycetota (17.08%), Actinobacteriota (15.37%), Verrucomicrobiota (12.17%), and Acidobacteriota (7.87%). The diversity analysis metric showed that Heterodermia contained the highest bacterial species richness. Within the lichens, Ramalina conduplicans and Cladonia rappii showed a distinct bacterial community from the other lichen species. The community of lichen-associated actinobacteria was investigated as a potential source of synthesized biologically active compounds. From the total Operational Taxonomic Units (OTUs) found across the ten different lichen samples, 13.21% were identified as actinobacteria, including the rare actinobacterial genera that are not commonly found, such as Pseudonocardia, Kineosporia, Dactylosporangium, Amycolatopsis, Actinoplanes, and Streptosporangium. Evaluation of the pretreatment method (heat, air-drying, phenol, and flooding) and isolation media used for the culture-dependent actinobacterial isolation revealed that the different pretreatments combined with different isolation media were effective in obtaining several species of actinobacteria. However, metagenomics analyses revealed that there were still several strains, including rare actinobacterial species, that were not isolated. This research strongly suggests that lichens appear to be a promising source for obtaining actinobacteria.
      Prevalence of Borrelia burgdorferi and diversity of its outer surface protein C (ospC) alleles in blacklegged ticks (Ixodes scapularis) in Delaware
      Scarlet A. Shifflett - 2023
      Abstract
      Characterizing the diversity of genes associated with virulence and transmission of a pathogen across the pathogen's distribution can inform our understanding of host infection risk. Borrelia burgdorferi is a vector-borne bacterium that causes Lyme disease in humans and is common in the United States. The outer surface protein C (ospC) gene of B. burgdorferi exhibits substantial genetic variation across the pathogen's distribution and plays a critical role in virulence and transmission in vertebrate hosts. In fact, B. burgdorferi infections that disseminate across host tissues in humans are associated with only a subset of ospC alleles. Delaware has a high incidence of Lyme disease, but the diversity of ospC in B. burgdorferi in the state has not been evaluated. We used PCR to amplify ospC in B. burgdorferi-infected blacklegged ticks (Ixodes scapularis) in sites statewide and used short-read sequencing to identify ospC alleles. B. burgdorferi prevalence in blacklegged ticks varied across sites, but not significantly so. We identified 15 previously characterized ospC alleles accounting for nearly all of the expected diversity of alleles across the sites as estimated using the Chao1 index. Nearly 40% of sequenced infections (23/58) had more than one ospC allele present suggesting mixed strain infections and the relative frequencies of alleles in single infections were positively correlated with their relative frequencies in mixed infections. Turnover of ospC alleles was positively related to distance between sites with closer sites having more similar allele compositions than more distant sites. This suggests a degree of B. burgdorferi dispersal limitation or habitat specialization. OspC alleles known to cause disseminated infections in humans were found at the highest frequencies across sites, corresponding to Delaware's high incidence of Lyme disease.
      A comprehensive study of a 29-capsid AAV library in a non-human primate central nervous system
      Oleksandr Kondratov - 2021
      Abstract
      Non-human primates (NHPs) are a preferred animal model for optimizing adeno-associated virus (AAV)-mediated CNS gene delivery protocols before clinical trials. In spite of its inherent appeal, it is challenging to compare different serotypes, deliv- ery routes, and disease indications in a well-powered, compre- hensive, multigroup NHP experiment. Here, a multiplex barcode recombinant AAV (rAAV) vector-tracing strategy has been applied to a systemic analysis of 29 distinct, wild- type (WT), AAV natural isolates and engineered capsids in the CNS of eight macaques. The report describes distribution of each capsid in 15 areas of the macaques’ CNS after intrapar- enchymal (putamen) injection, or cerebrospinal fluid (CSF)- mediated administration routes (intracisternal, intrathecal, or intracerebroventricular). To trace the vector biodistribution (viral DNA) and targeted tissues transduction (viral mRNA) of each capsid in each of the analyzed CNS areas, quantitative next-generation sequencing analysis, assisted by the digital- droplet PCR technology, was used. The report describes the most efficient AAV capsid variants targeting specific CNS areas after each route of administration using the direct side-by-side comparison of WT AAV isolates and a new generation of ratio- nally designed capsids. The newly developed bioinformatics and visualization algorithms, applicable to the comparative analysis of several mammalian brain models, have been devel- oped and made available in the public domain.
  • Reverse Transcription
    • First-Strand cDNA Synthesis
      CHARACTERIZING THE FUNCTION OF MIR-200S IN TRIPLE NEGATIVE BREAST CANCER
      Kaitlyn E Simpson - 2023
      Abstract
      The high mortality, clinical heterogeneity, and relatively high incidence of triple negative breast cancer (TNBC) emphasizes the urgency for a clearer understanding of tumor development and identification of novel therapeutic targets. Recent findings suggest miRNAs play an integral role in breast tumor development, posing as important post-transcriptional regulators of cell growth, differentiation, proliferation, migration, and apoptosis. Specifically, the miR-200 family which is down regulated in TNBC, has demonstrated a significant role in the regulation of the epithelial to mesenchymal transition (EMT), cellular proliferation, migration, stem/progenitor cell characteristics, and immune regulatory molecules. However, the mechanisms by which the miR200 family regulates TNBC tumorigenesis and metastasis remain poorly understood. Therefore, this thesis aimed to uncover the functional characteristics of the miR-200 family clusters through miRNA re-expression studies to identify potential mechanisms by which they regulate the highly aggressive TNBC phenotype. This work utilized miRNA re-expression studies and confirmed that the miR-200 miRNA family, specifically the miR-200c/141 cluster can suppress mammary tumor initiation and metastasis of human TNBC breast cancer. Additionally, our studies identified SUZ12 and subsequent downregulation of MXRA8 as potential mechanisms by which the miR-200s regulate these processes. Further, our MXRA8 knockout resulted in delayed mammary tumor initiation, reduced growth, and inhibited metastasis of human TNBC. As the first studies to identify and characterize a functional role of MXRA8 in breast cancer, this thesis serves as a foundation for future inquiries into the role and mechanism of MXRA8 in breast cancer, and its potential relationship with the miR-200s, and SUZ12-related genes.
      Transcriptional Targets of TWIST1 in Human Mesenchymal Stem/Stromal Cells Mechanistically Link Stem/Progenitor and Paracrine Functions
      Christopher L. Haga - 2023
      Abstract
      Despite extensive clinical testing, mesenchymal stem/stromal cell (MSC)-based therapies continue to underperform with respect to efficacy, which reflects the paucity of biomarkers that predict potency prior to patient administration. Previously, we reported that TWIST1 predicts inter-donor differences in MSC quality attributes that confer potency. To define the full spectrum of TWIST1 activity in MSCs, the present work employed integrated omics-based profiling to identify a high confidence set of TWIST1 targets, which mapped to cellular processes related to ECM structure/organization, skeletal and circulatory system development, interferon gamma signaling, and inflammation. These targets are implicated in contributing to both stem/progenitor and paracrine activities of MSCs indicating these processes are linked mechanistically in a TWIST1 dependent manner. Targets implicated in extracellular matrix dynamics further implicate TWIST1 in modulating cellular responses to niche remodeling. Novel TWIST1 regulated genes identified herein may be prioritized for future mechanistic and functional studies.
      Arc1: a regulator of triglyceride homeostasis in male Drosophila
      Samuel D. Swope - 2023
      Abstract
      Achieving metabolic homeostasis is necessary for survival, and many genes are required to control organismal metabolism. A genetic screen in Drosophila larvae identified putative fat storage genes including Arc1. Arc1 has been shown to act in neurons to regulate larval lipid storage; however, whether Arc1 functions to regulate adult metabolism is unknown. Arc1 esm18 males store more fat than controls while both groups eat similar amounts. Arc1 esm18 flies express more brummer lipase and less of the glycolytic enzyme triose phosphate isomerase, which may contribute to excess fat observed in these mutants. These results suggest that Arc1 regulates adult Drosophila lipid homeostasis.
      Ezetimibe attenuates functional impairment via inhibition of oxidative stress and inflammation in traumatic spinal cord injury
      Wei Rong - 2023
      Abstract
      Sustained inflammation after a traumatic spinal cord injury (TSCI) triggers oxidative stress and neuronal apoptosis, hindering functional recovery. Ezetimibe (EZE) has been reported to have anti-inflammatory and antioxidative properties in hepatology-related diseases, but its potential role in SCI remains unclear. In this study, we evaluated the therapeutic effect of EZE on inflammatory microglia and in an SCI model and elucidated the underlying mechanism. First, we stimulated the BV2 microglia cell line with LPS, and we also induced moderate spinal cord injuries in adult male C57BL/6 mice. Both the cells and mice were treated with EZE, and we investigated inflammation, oxidative stress, neurologic damage, and motor function in vitro and in vivo, respectively. Our findings demonstrated that EZE administration attenuates inflammation in microglia by regulating the AMPK/Nrf2 axis. Furthermore, EZE treatment reduced inflammation and oxidative stress levels in the injured spinal cord. Additionally, treatment with EZE decreased glial scarring and improved motor function recovery, indicating the protective role of EZE in SCI. EZE was found to have anti-inflammatory and antioxidative effects on SCI, and it modulated the AMPK/Nrf2 pathway in microglia. Moreover, EZE prevented histological destruction of the spinal cord tissue. In conclusion, EZE shows promise as a drug to protect neurologic integrity following post-SCI.
      Improving Physical Movement During Stroke Rehabilitation: Investigating Associations Between Sleep Measured by Wearable Actigraphy Technology, Fatigue, and Key Biomarkers
      Madeleine J. Smith - 2023
      Abstract
      Background Sleep disturbances and fatigue are common in individuals undergoing inpatient rehabilitation following stroke. Understanding the relationships between sleep, fatigue, motor performance, and key biomarkers of inflammation and neuroplasticity could provide valuable insight into stroke recovery, possibly leading to personalized rehabilitation strategies. This study aimed to investigate the influence of sleep quality on stroke recovery by utilizing wearable technology to obtain objective sleep measurements. Additionally, we explored the relationships between sleep, fatigue, and motor performance. Lastly, the study aimed to determine if salivary biomarkers of stress, inflammation, and neuroplasticity were associated with fatigue or motor function post-stroke. Methods Eighteen individuals who experienced a stroke and were undergoing inpatient rehabilitation participated in a cross-sectional observational study. Following consent, participants completed questionnaires to assess sleep patterns, fatigue, and quality of life. Objective sleep was measured throughout one night using the wearable Philips Actiwatch. Upper limb motor performance was assessed on the following day and saliva was collected for biomarker analysis. Correlation analyses were performed to assess the relationships between variables. Results Participants reported poor sleep quality, frequent awakenings, and difficulties falling asleep following stroke. We identified a significant negative relationship between fatigue severity and both sleep quality (r=-0.539, p = 0.021) and participants experience of awakening from sleep (r=-0.656, p = 0.003). A significant positive relationship was found between grip strength on the non-hemiplegic limb and salivary gene expression of Brain-derived Neurotrophic Factor (r = 0.606, p = 0.028), as well as a significant negative relationship between grip strength on the hemiplegic side and salivary gene expression of C-reactive Protein (r=-0.556, p = 0.048). Additionally, there was a positive relationship between gene expression of Interleukin-1beta and stroke severity (r = 0.78, p = 0.003) as well as between days since stroke and gene expression of C-reactive Protein (r = 0.615, p = 0.025). Conclusion The findings of this study emphasize the importance of considering sleep quality, fatigue, and biomarkers in stroke rehabilitation to optimize recovery and that interventions may need to be tailored to the individual. Future longitudinal studies are required to explore these relationships over time. Integrating wearable technology for sleep monitoring and biomarker analysis can enhance monitoring and prediction of outcomes following stroke, ultimately improving rehabilitation strategies and patient outcomes.
  • Sample Preparation
    • DNA
      The Role of Historical and Contemporary Evolutionary Processes on the Availability of Genetic Variation in Arctic charr (Salvelinus alpinus)
      Christine L. Ouellet-Fagg - 2023
      Abstract
      Genetic variation is a fundamental resource for evolution, but its timing of origin and availability for selection are not completely understood. I examined evolutionary and developmental mechanisms that influence the availability of genetic variation in Arctic charr (Salvelinus alpinus). My first research focus was to determine if large-scale chromosomal rearrangements (CR) influence genetic and morphological divergence among different populations. I characterized the diversity of CR in Canadian and Icelandic populations from two glacial lineages and inferred when this variation arose relative to the post-glacial evolutionary history of the species. I detected several types of polymorphic CR including Robertsonian fusions/fissions through comparisons of sex-specific genetic linkage maps. The observation that CR variation is largely shared across populations and between sympatric morphs suggests that standing (historical) genetic variation in CR plays a limited role in genetic divergence and contemporary patterns of phenotypic divergence in Arctic charr. My second research focus was to determine if developmental processes have an effect on the genetic architecture of important morphological traits underlying adaptive divergence within populations. Here, the goal was to determine if the genetic architecture of morphological traits related to resource use change over ontogeny (age) and between environments (dietary specialization). To address this goal, I conducted quantitative trait locus (QTL) analysis on morphological traits in families from sympatric morphs originating from two Icelandic lakes at two ages and reared on two ecologically relevant diet treatments. I found that age and diet influence the values of morphological traits and that QTL change over age and across diet. This suggests that developmental processes greatly influence the genetic variation of morphological traits available for selection. I also assessed whether the genetic architecture of morphological traits depends on allometric relationships between body shape and size. The observation that the retention or minimization of the allometric component of shape variation has little effect on genetic architecture suggests that there is limited genetic variation for allometry, thus reducing variation available for selection. Overall, my thesis illustrates that the availability of genetic variation for evolutionary change is influenced by evolutionary history and developmentally mediated effects on genetic architecture.
      Amphiregulin couples IL1RL1+ regulatory T cells and cancer-associated fibroblasts to impede antitumor immunity
      Runzi Sun - 2023
      Abstract
      Regulatory T (Treg) cells and cancer-associated fibroblasts (CAFs) jointly promote tumor immune tolerance and tumorigenesis. The molecular apparatus that drives Treg cell and CAF coordination in the tumor microenvironment (TME) remains elusive. Interleukin 33 (IL-33) has been shown to enhance fibrosis and IL1RL1+ Treg cell accumulation during tumorigenesis and tissue repair. We demonstrated that IL1RL1 signaling in Treg cells greatly dampened the antitumor activity of both IL-33 and PD-1 blockade. Whole tumor single-cell RNA sequencing (scRNA-seq) analysis and blockade experiments revealed that the amphiregulin (AREG)–epidermal growth factor receptor (EGFR) axis mediated cross-talk between IL1RL1+ Treg cells and CAFs. We further demonstrated that the AREG/EGFR axis enables Treg cells to promote a profibrotic and immunosuppressive functional state of CAFs. Moreover, AREG mAbs and IL-33 concertedly inhibited tumor growth. Our study reveals a previously unidentified AREG/EGFR-mediated Treg/CAF coupling that controls the bifurcation of fibroblast functional states and is a critical barrier for cancer immunotherapy.
      Improved Dried Blood Spot PCR Assay for Universal Congenital Cytomegalovirus Screening in Newborns
      Jean H. Kim - 2023
      Abstract
      Congenital cytomegalovirus (cCMV) is the most common perinatal infection, the leading cause of nongenetic sensorineural hearing loss, and one of the leading causes of neurodevelopmental impairment in the developed world. Early identification via newborn screening (NBS) would benefit the many undiagnosed infants who are either asymptomatic or mildly to moderately symptomatic, of whom 20% develop sequelae. The sensitivity of a recently developed PCR-based method to detect CMV in dried blood spots (DBS) is less than 80% and requires significantly more specimen than any other NBS test. We sought to improve the analytical sensitivity of the screening method by using droplet digital PCR and direct PCR and decreasing the amount of specimen utilized. The methods were tested with CMV-spiked filters, DBS from CMV-spiked cord blood, and DBS from neonates with cCMV. The results showed that the analytical sensitivity of all modified methods was equivalent to that of the reference method, with consistent CMV detection at high viral loads and inconsistent detection at low viral loads.
    • RNA
      The Role of Historical and Contemporary Evolutionary Processes on the Availability of Genetic Variation in Arctic charr (Salvelinus alpinus)
      Christine L. Ouellet-Fagg - 2023
      Abstract
      Genetic variation is a fundamental resource for evolution, but its timing of origin and availability for selection are not completely understood. I examined evolutionary and developmental mechanisms that influence the availability of genetic variation in Arctic charr (Salvelinus alpinus). My first research focus was to determine if large-scale chromosomal rearrangements (CR) influence genetic and morphological divergence among different populations. I characterized the diversity of CR in Canadian and Icelandic populations from two glacial lineages and inferred when this variation arose relative to the post-glacial evolutionary history of the species. I detected several types of polymorphic CR including Robertsonian fusions/fissions through comparisons of sex-specific genetic linkage maps. The observation that CR variation is largely shared across populations and between sympatric morphs suggests that standing (historical) genetic variation in CR plays a limited role in genetic divergence and contemporary patterns of phenotypic divergence in Arctic charr. My second research focus was to determine if developmental processes have an effect on the genetic architecture of important morphological traits underlying adaptive divergence within populations. Here, the goal was to determine if the genetic architecture of morphological traits related to resource use change over ontogeny (age) and between environments (dietary specialization). To address this goal, I conducted quantitative trait locus (QTL) analysis on morphological traits in families from sympatric morphs originating from two Icelandic lakes at two ages and reared on two ecologically relevant diet treatments. I found that age and diet influence the values of morphological traits and that QTL change over age and across diet. This suggests that developmental processes greatly influence the genetic variation of morphological traits available for selection. I also assessed whether the genetic architecture of morphological traits depends on allometric relationships between body shape and size. The observation that the retention or minimization of the allometric component of shape variation has little effect on genetic architecture suggests that there is limited genetic variation for allometry, thus reducing variation available for selection. Overall, my thesis illustrates that the availability of genetic variation for evolutionary change is influenced by evolutionary history and developmentally mediated effects on genetic architecture.
      De novo transcriptome assembly and gene annotation for the toxic dinoflagellate Dinophysis
      Chetan C. Gaonkar - 2023
      Abstract
      Species within the dinoflagellate genus Dinophysis can produce okadiac acid and dinophysistoxins leading to diarrhetic shellfish poisoning. Since the first report of D. ovum from the Gulf of Mexico in 2008, reports of other Dinophysis species across US have increased. Members of the D. cf. acuminata complex (D. acuminata, D. acuta, D. ovum, D. sacculus) are difficult to differentiate due to their morphological similarities. Dinophysis feeds on and steals the chloroplasts from the ciliate, Mesodinium rubrum, which in turn has fed on and captured the chloroplasts of its prey, the cryptophyte Teleaulax amphioxeia. The objective of this study was to generate de novo transcriptomes for new isolates of these mixotrophic organisms. The transcriptomes obtained will serve as a reference for future experiments to assess the effect of different abiotic and biotic conditions and will also provide a useful resource for screening potential marker genes to differentiate among the closely related species within the D. cf. acuminata-complex. The complete comprehensive detailed workflow and links to obtain the transcriptome data are provided.
  • Real-Time qPCR
    Neurexin-3 subsynaptic densities are spatially distinct from Neurexin-1 and essential for excitatory synapse nanoscale organization in the hippocampus
    Brian A Lloyd - 2023
    Abstract
    Proteins critical for synaptic transmission are non-uniformly distributed and assembled into regions of high density called subsynaptic densities (SSDs) that transsynaptically align in nanocolumns. Neurexin-1 and neurexin-3 are essential presynaptic adhesion molecules that non-redundantly control NMDAR- and AMPAR-mediated synaptic transmission, respectively, via transsynaptic interactions with distinct postsynaptic ligands. Despite their functional relevance, fundamental questions regarding the nanoscale properties of individual neurexins, their influence on the subsynaptic organization of excitatory synapses and the mechanisms controlling how individual neurexins engage in precise transsynaptic interactions are unknown. Using Double Helix 3D dSTORM and neurexin mouse models, we identify neurexin-3 as a critical presynaptic adhesion molecule that regulates excitatory synapse nano-organization in hippocampus. Furthermore, endogenous neurexin-1 and neurexin-3 form discrete and non-overlapping SSDs that are enriched opposite their postsynaptic ligands. Thus, the nanoscale organization of neurexin-1 and neurexin-3 may explain how individual neurexins signal in parallel to govern different synaptic properties.
    Identification of Tomato mottle mosaic virus in historic seed accessions originating from France, the Netherlands and Spain, indicates a wider presence before its first description
    Ruben Schoen - 2023
    Abstract
    Tomato mottle mosaic virus (ToMMV) is a tobamovirus found in a Solanum lycopersicum sample collected in Mexico in 2009. To assess the possible presence of ToMMV in Europe, accessions from a historic seed collection were tested by real-time RT-PCR and Illumina sequencing. ToMMV was identified in historical seed accessions produced in France, the Netherlands and Spain. Three different near complete genome sequences were obtained, each corresponding to the country in which the seeds had been produced. Positive samples from France and Spain could be related to the same production location and year, respectively, while the identical genome sequences from the Netherlands were obtained from samples produced in different locations and years between 1981 and 2007. The latter could be due to the fact that the Dutch seed accessions had been repacked in the past at the same location and time as accessions with a relatively high virus load from 2007. This indicates that possibly only the seeds from 2007 originated from ToMMV-infected plants, while the detection of ToMMV in the older seed accessions resulted from cross contamination. This data shows that ToMMV has been around in Europe before its first description and is possibly more widespread than currently known.
    Increased Acetylcholinesterase expression in Bumble Bees During Neonicotinoid-Coated Corn sowing
    Olivier samson-Robert - 2015
    Abstract
    While honey bee exposure to systemic insecticides has received much attention, impacts on wild pollinators have not been as widely studied. Neonicotinoids have been shown to increase acetylcholinesterase (AChe) activity in honey bees at sublethal doses. High AChe levels may therefore act as a biomarker of exposure to neonicotinoids. this two-year study focused on establishing whether bumble bees living and foraging in agricultural areas using neonicotinoid crop protection show early biochemical signs of intoxication. Bumble bee colonies (Bombus impatiens) were placed in two different agricultural cropping areas: 1) control (≥3 km from fields planted with neonicotinoid-treated seeds) or 2) exposed (within 500 m of fields planted with neonicotinoidtreated seeds), and maintained for the duration of corn sowing. As determined by Real time qpCR, AChE mRNA expression was initially significantly higher in bumble bees from exposed sites, then decreased throughout the planting season to reach a similar endpoint to that of bumble bees from control sites. These findings suggest that exposure to neonicotinoid seed coating particles during the planting season can alter bumble bee neuronal activity. To our knowledge, this is the first study to report in situ that bumble bees living in agricultural areas exhibit signs of neonicotinoid intoxication.
    Sperm DNA methylation alterations from cannabis extract exposure are evident in offspring
    Rose Schrott - 2022
    Abstract
    Background Cannabis legalization is expanding and men are the predominant users. We have limited knowledge about how cannabis impacts sperm and whether the effects are heritable. Results Whole genome bisulfite sequencing (WGBS) data were generated for sperm of rats exposed to: (1) cannabis extract (CE) for 28 days, then 56 days of vehicle only (~ one spermatogenic cycle); (2) vehicle for 56 days, then 28 days of CE; or (3) vehicle only. Males were then mated with drug-naïve females to produce F1 offspring from which heart, brain, and sperm tissues underwent analyses. There were 3321 nominally significant differentially methylated CpGs in F0 sperm identified via WGBS with select methylation changes validated via bisulfite pyrosequencing. Significant methylation changes validated in F0 sperm of the exposed males at the gene 2-Phosphoxylose Phosphatase 1 (Pxylp1) were also detectable in their F1 sperm but not in controls. Changes validated in exposed F0 sperm at Metastasis Suppressor 1-Like Protein (Mtss1l) were also present in F1 hippocampal and nucleus accumbens (NAc) of the exposed group compared to controls. For Mtss1l, a significant sex-specific relationship between DNA methylation and gene expression was demonstrated in the F1 NAc. Phenotypically, rats born to CSE-exposed fathers exhibited significant cardiomegaly relative to those born to control fathers. Conclusions This is the first characterization of the effect of cannabis exposure on the entirety of the rat sperm methylome. We identified CE-associated methylation changes across the sperm methylome, some of which persisted despite a “washout” period. Select methylation changes validated via bisulfite pyrosequencing, and genes associated with methylation changes were involved in early developmental processes. Preconception CE exposure is associated with detectable changes in offspring DNA methylation that are functionally related to changes in gene expression and cardiomegaly. These results support that paternal preconception exposure to cannabis can influence offspring outcomes.
    Point-of-Care Platform for Rapid Multiplexed Detection of SARS-CoV-2 Variants and Respiratory Pathogens
    Alexander Y. Trick - 2022
    Abstract
    The rise of highly transmissible SARS-CoV-2 variants brings new challenges and concerns with vaccine efficacy, diagnostic sensitivity, and public health responses to end the pandemic. Widespread detection of variants is critical to inform policy decisions to mitigate further spread, and postpandemic multiplexed screening of respiratory viruses will be necessary to properly manage patients presenting with similar respiratory symptoms. In this work, a portable, magnetofluidic cartridge platform for automated polymerase chain reaction testing in <30 min is developed. Cartridges are designed for multiplexed detection of SARS-CoV-2 with either identification of variant mutations or screening for Influenza A and B. Moreover, the platform can perform identification of B.1.1.7 and B.1.351 variants and the multiplexed SARS-CoV-2/Influenza assay using archived clinical nasopharyngeal swab eluates and saliva samples. This work illustrates a path toward affordable and immediate testing with potential to aid surveillance of viral variants and inform patient treatment.
  • Q qPCR Instrument
    Immunotherapy with IL12 and PD1/CTLA4 inhibition is effective in advanced ovarian cancer and associates with reversal of myeloid cell-induced immunosuppression
    Paul G. Pavicic Jr. - 2023
    Abstract
    The tumor microenvironment (TME) in ovarian cancer (OC) is characterized by immune suppression, due to an abundance of suppressive immune cells populations. To effectively enhance the activity of immune checkpoint inhibition (ICI), there is a need to identify agents that target these immunosuppressive networks while promoting the recruitment of effector T cells into the TME. To this end, we sought to investigate the effect of the immunomodulatory cytokine IL12 alone or in combination with dual-ICI (anti-PD1 + anti-CTLA4) on anti-tumor activity and survival, using the immunocompetent ID8-VEGF murine OC model. Detailed immunophenotyping of peripheral blood, ascites, and tumors revealed that durable treatment responses were associated with reversal of myeloid cell-induced immune suppression, which resulted in enhanced anti-tumor activity by T cells. Single cell transcriptomic analysis further demonstrated striking differences in the phenotype of myeloid cells from mice treated with IL12 in combination with dual-ICI. We also identified marked differences in treated mice that were in remission compared to those whose tumors progressed, further confirming a pivotal role for the modulation of myeloid cell function to allow for response to immunotherapy. These findings provide the scientific basis for the combination of IL12 and ICI to improve clinical response in OC.

Product Finder

Select Your Assay

Starting Template

Assay Format

Detection Chemistry

Multiplexing (more than 3 targets)

Is gene-specific priming (GSP) required?

What current Reverse Transcriptase or cDNA kit are you using?

Select the group which contains your real-time PCR cycler

  • Applied Biosystems 7500
  • Applied Biosystems 7500 Fast
  • Stratagene Mx3000P®
  • Stratagene Mx3005P™
  • Stratagene Mx4000™
  • Applied Biosystems ViiA 7
  • Applied Biosystems QuantStudio™
  • Agilent AriaMx
  • Douglas Scientific IntelliQube®
  • Applied Biosystems 5700
  • Applied Biosystems 7000
  • Applied Biosystems 7300
  • Applied Biosystems 7700
  • Applied Biosystems 7900
  • Applied Biosystems 7900HT
  • Applied Biosystems 7900 HT Fast
  • Applied Biosystems StepOne™
  • Applied Biosystems StepOnePlus™
  • Quantabio Q
  • BioRad CFX
  • Roche LightCycler 480
  • QIAGEN Rotor-Gene Q
  • Azure Cielo 6
  • Azure Cielo 3
  • Other
  • BioRad iCycler iQ™
  • BioRad MyiQ™
  • BioRad iQ™5

Choose your application from the categories below

Products

I give Quantabio or an authorized Quantabio distributor permission to contact me for product updates and news.
* Required information