US
array(50) {
  ["SERVER_SOFTWARE"]=>
  string(6) "Apache"
  ["REQUEST_URI"]=>
  string(34) "/product/sparq-hifi-pcr-mastermix/"
  ["PATH"]=>
  string(49) "/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin"
  ["PP_CUSTOM_PHP_INI"]=>
  string(48) "/var/www/vhosts/system/quantabio.com/etc/php.ini"
  ["PP_CUSTOM_PHP_CGI_INDEX"]=>
  string(19) "plesk-php74-fastcgi"
  ["SCRIPT_NAME"]=>
  string(10) "/index.php"
  ["QUERY_STRING"]=>
  string(0) ""
  ["REQUEST_METHOD"]=>
  string(3) "GET"
  ["SERVER_PROTOCOL"]=>
  string(8) "HTTP/1.1"
  ["GATEWAY_INTERFACE"]=>
  string(7) "CGI/1.1"
  ["REDIRECT_URL"]=>
  string(34) "/product/sparq-hifi-pcr-mastermix/"
  ["REMOTE_PORT"]=>
  string(5) "50122"
  ["SCRIPT_FILENAME"]=>
  string(48) "/var/www/vhosts/quantabio.com/httpdocs/index.php"
  ["SERVER_ADMIN"]=>
  string(14) "root@localhost"
  ["CONTEXT_DOCUMENT_ROOT"]=>
  string(38) "/var/www/vhosts/quantabio.com/httpdocs"
  ["CONTEXT_PREFIX"]=>
  string(0) ""
  ["REQUEST_SCHEME"]=>
  string(5) "https"
  ["DOCUMENT_ROOT"]=>
  string(38) "/var/www/vhosts/quantabio.com/httpdocs"
  ["REMOTE_ADDR"]=>
  string(11) "23.20.20.52"
  ["SERVER_PORT"]=>
  string(3) "443"
  ["SERVER_ADDR"]=>
  string(13) "172.31.63.191"
  ["SERVER_NAME"]=>
  string(17) "www.quantabio.com"
  ["SERVER_SIGNATURE"]=>
  string(0) ""
  ["HTTP_ACCEPT_ENCODING"]=>
  string(7) "br,gzip"
  ["HTTP_ACCEPT_LANGUAGE"]=>
  string(14) "en-US,en;q=0.5"
  ["HTTP_ACCEPT"]=>
  string(63) "text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8"
  ["HTTP_USER_AGENT"]=>
  string(40) "CCBot/2.0 (https://commoncrawl.org/faq/)"
  ["HTTP_X_SUCURI_COUNTRY"]=>
  string(2) "US"
  ["HTTP_X_SUCURI_CLIENTIP"]=>
  string(11) "23.20.20.52"
  ["HTTP_X_FORWARDED_PROTO"]=>
  string(5) "https"
  ["HTTP_CONNECTION"]=>
  string(5) "close"
  ["HTTP_X_FORWARDED_FOR"]=>
  string(11) "23.20.20.52"
  ["HTTP_X_REAL_IP"]=>
  string(13) "185.93.229.32"
  ["HTTP_HOST"]=>
  string(17) "www.quantabio.com"
  ["HTTPS"]=>
  string(2) "on"
  ["HTTP_AUTHORIZATION"]=>
  string(0) ""
  ["SCRIPT_URI"]=>
  string(59) "https://www.quantabio.com/product/sparq-hifi-pcr-mastermix/"
  ["SCRIPT_URL"]=>
  string(34) "/product/sparq-hifi-pcr-mastermix/"
  ["UNIQUE_ID"]=>
  string(27) "YfG4cxeClbuWhEq4uIoRIgAAABE"
  ["REDIRECT_STATUS"]=>
  string(3) "200"
  ["REDIRECT_HTTPS"]=>
  string(2) "on"
  ["REDIRECT_HTTP_AUTHORIZATION"]=>
  string(0) ""
  ["REDIRECT_SCRIPT_URI"]=>
  string(59) "https://www.quantabio.com/product/sparq-hifi-pcr-mastermix/"
  ["REDIRECT_SCRIPT_URL"]=>
  string(34) "/product/sparq-hifi-pcr-mastermix/"
  ["REDIRECT_UNIQUE_ID"]=>
  string(27) "YfG4cxeClbuWhEq4uIoRIgAAABE"
  ["FCGI_ROLE"]=>
  string(9) "RESPONDER"
  ["PHP_SELF"]=>
  string(10) "/index.php"
  ["REQUEST_TIME_FLOAT"]=>
  float(1643231347.3885)
  ["REQUEST_TIME"]=>
  int(1643231347)
  ["SUCURIREAL_REMOTE_ADDR"]=>
  string(13) "185.93.229.32"
}

sparQ HiFi PCR Master Mix

High-fidelity, high-efficiency library amplification while maintaining even coverage
Features & Benefits
  • HiFi DNA polymerase engineered to minimize amplification bias
  • Increased amplification efficiency resulting in higher yields
  • Uniform coverage across challenging AT- and GC-rich regions
  • Robust amplification from input DNA as low as 250 pg
  • Cost-effective alternative to KAPA HiFi with improved performance

 

sparQ HiFi PCR Master Mix is intended for molecular biology applications. This product is not intended for the diagnosis, prevention or treatment of a disease.

Product
Kit Size
Order Info
Product
Kit Size
Order Info
sparQ HiFi PCR Master Mix
Request Sample
Kit Size:
Order Info:

Description

sparQ HiFi PCR Master Mix is a high-fidelity, high-efficiency PCR master mix for NGS workflows requiring DNA library amplification prior to sequencing. The included primer mix allows amplification of DNA libraries flanked by adapters containing the P5 and P7 sequence elements required for Illumina® sequencing platforms. The hot-start, proofreading DNA polymerase used in the sparQ HiFi PCR Mater Mix is specifically engineered to improve library amplification efficiency while reducing PCR-derived artifacts, resulting in higher library yields and better coverage uniformity. This kit supports low DNA input from 250 pg and efficient amplification of AT- and GC rich regions with minimal bias.

Details

Details

Contents
  • 2X HiFi PCR Master Mix
  • Primer Mix
  • HiFi Enhancer

Details

Contents
  • 2X HiFi PCR Master Mix
  • Primer Mix
  • HiFi Enhancer

Performance Data

Resources

Publications

Microbiome Fingerprint as Biomarker for Geographical Origin and Heredity in Crocus sativus: A Feasibility Study
Nancy Bhagat - 2021
Abstract
Host–microbiome interactions are specific and not random, making them defining entities for the host. The hypothesis proposed by various researchers earlier, that both plants and animals harbor specific inheritable core microbiome, is being augmented in the present study. Additionally, a case for using microbial fingerprint as a biomarker, not only for plant identification but also as a geographical indicator, has been investigated, taking Crocus sativus, saffron, as a study material. Crocus sativus, a monogenetic herb, on account of its male sterility and vegetative propagation, is reported to lack genome based molecular markers. Cormosphere microbiome (microbiome associated with corm) has been compared across three geographical locations, in two continents, to identify the core and unique microbiome, during the vegetative phase of its growth. Microbiome analysis done at phylum and genus level, using next generation sequencing technology, revealed that cormosphere at three locations harbored common phyla. At genus level, 24 genera were found common to all three geographical locations, indicating them to be part of the core microbiome of saffron. However, there were some bacterial genera unique to Kashmir, Kishtwar, and Morocco that can be used to develop microbial markers/geographical indicators for saffron grown in these regions. This is a preliminary study, indicating that the location specific bacterial community can be used to develop microbial barcodes but needs further augmentation with high coverage data from other saffron growing geographical regions.
Integrative approaches for unmasking hidden species in herbal dietary supplement products: What is in the capsule?
Kannika Thongkhao - 2021
Abstract
Herbal dietary supplement products are often marketed as herbal mixtures, which makes quality control processes difficult. Herein, paired-end next-generation sequencing (NGS), microscopic examination and highperformance thin layer chromatography (HPTLC) were integrated to unveil herbal ingredient compositions in a selected herbal dietary supplement product. The product was labeled as containing capsicum, cactus, wheat, white bean, Garcinia cambogia, psyllium husk and black pepper in each capsule. A laboratory-made sample was prepared as a reference sample according to the product label. NGS indicated that six out of the seven herbal species were detected in the laboratory-made sample, while 97.02 ± 0.15% of sequencing reads from the commercial product belonged to Senna alexandrina. Microscopic examination also confirmed the presence of Senna. Similar chemical constituents of the product and Senna powder were observed by HPTLC patterns. Surprisingly, there was a distinct band difference between samples. After extraction and LC-MS/MS analysis, oleamide was found as an adulterant in the product. None of the plants listed on the commercial product label were detected by any of the methods. Therefore, the integrative approaches successfully unmasked nonlisted herbal species in a selected herbal dietary supplement product. These approaches should be applied to other dietary supplement products for registration and regulation processes.
Effect of Partial Replacement of Fish Meal by Bacillus sp-Fermented Soybean Meal on Growth Performance, Immunity, Hepatopancreas Microbiota and Disease Resistance in Pacific White Shrimp (Litopenaeus vannamei)
Kanokwan Cherdkeattipol - 2021
Abstract
This study examined the effect of substituting a diet containing 20% fish meal (FM) and 10% soy bean meal (SBM) with Bacillus-fermented soybean meal (FSBM) on growth, immune response, microbial community in the hepatopancreas, and disease prevention in Pacific white shrimp. Shrimp were fed diets with four levels of FSBM (0%, 15%, 20% and 25%) to replace FM and SBM. After 60 days of the feeding trial, no difference was found among treatments for specific growth rate (1.62-1.66 g), survival rate (88.08-93.64 %), feed conversion ratio (FCR) (1.31-1.41), or protein efficiency ratio (88.08-93.46). However, shrimp fed 25% FSBM showed a significant improvement in total hemocyte count (THC), phagocytic activity, and phenoloxidase activity (PO) compared with other groups. In the hepatopancreatic microbiota, we identified six phyla, of which Bacteroidetes was the most dominant phylum in the three groups fed with FSBM. In contrast, Firmicutes was dominant in the control group. After a challenge test with Vibrio parahaemolyticus, shrimp fed 25% FSBM had a significantly higher average survival rate compared with other experimental groups infected with V. parahaemolyticus. The histopathology of the hepatopancreas of shrimp from this group showed fewer signs of bacterial infection than other groups infected with V. parahaemolyticus. This study indicates that FSBM at the concentration of 25% can enhance immune response and tolerance to pathogenic V. parahaemolyticus in the Pacific white shrimp.
DNA metabarcoding to unravel plant species composition in selected herbal medicines on the National List of Essential Medicines (NLEM) of Thailand
Santhosh Kumar J. Urumarudappa - 2020
Abstract
Traditional medicines are widely traded across the globe and have received considerable attention in the recent past, with expectations of heightened demand in the future. However, there are increasing global concerns over admixture, which can affect the quality, safety, and efficacy of herbal medicinal products. In this study, we aimed to use DNA metabarcoding to identify 39 Thai herbal products on the Thai National List of Essential Medicines (NLEM) and assess species composition and admixture. Among the products, 24 samples were in-house-prepared formulations, and 15 samples were registered formulations. In our study, DNA metabarcoding analysis using ITS2 and rbcL barcode regions were employed to identify herbal ingredients mentioned in the products. The nuclear region, ITS2, was able to identify herbal ingredients in the products at the genus- and family-levels in 55% and 63% of cases, respectively. The chloroplast gene, rbcL, enabled genus- and family-level identifications in 58% and 73% of cases, respectively. In addition, plant species were detected in larger numbers (Family identified, absolute %) in registered herbal products than in in-house-prepared formulations. The level of fidelity increases concerns about the reliability of the products. This study highlights that DNA metabarcoding is a useful analytical tool when combined with advanced chemical techniques for the identification of plant species in highly processed, multi-ingredient herbal products.
Environmental DNA metabarcoding as a tool for biodiversity assessment and monitoring: reconstructing established fish communities of north-temperate lakes and rivers
Peter T. Euclide - 2021
Abstract
Aim To evaluate the ability of precipitation-based environmental DNA (eDNA) sample collection and mitochondrial 12S metabarcoding sequencing to reconstruct well-studied fish communities in lakes and rivers. Specific objectives were to 1) determine correlations between eDNA species detections and known community composition based on conventional field sampling, 2) compare efficiency of eDNA to detect fish biodiversity among systems with variable morphologies and trophic states, and 3) determine if species habitat preferences predict eDNA detection. Location Upper Great Lakes Region, North America. Methods Fish community composition was estimated for seven lakes and two Mississippi River navigation pools using sequence data from the mitochondrial 12S gene amplified from 10 to 50 water samples per waterbody collected in 50-mL centrifuge tubes at a single time point. Environmental DNA (eDNA) was concentrated without filtration by centrifuging samples to reduce per-sample handling time. Taxonomic detections from eDNA were compared to established community monitoring databases containing up to 40 years of sampling and a detailed habitat/substrate preference matrix to identify patterns of bias. Results Mitochondrial 12S gene metabarcoding detected 15%–47% of the known species at each waterbody and 30%–76% of known genera. Non-metric multidimensional scaling (NMDS) assessment of the community structure indicated that eDNA-detected communities grouped in a similar pattern as known communities. Discriminant analysis of principal components indicated that there was a high degree of overlap in habitat/substrate preference of eDNA-detected and eDNA-undetected species suggesting limited habitat bias for eDNA sampling. Main conclusions Large numbers of small volume samples sequenced at the mitochondrial 12S gene can describe the coarse community structure of freshwater systems. However, additional conventional sampling and environmental DNA sampling may be necessary for a complete diversity census.

Product Finder

Select Your Assay

Starting Template

Assay Format

Detection Chemistry

Multiplexing (more than 3 targets)

Is gene-specific priming (GSP) required?

What current Reverse Transcriptase or cDNA kit are you using?

Select the group which contains your real-time PCR cycler

  • Applied Biosystems 7500
  • Applied Biosystems 7500 Fast
  • Stratagene Mx3000P®
  • Stratagene Mx3005P™
  • Stratagene Mx4000™
  • Applied Biosystems ViiA 7
  • Applied Biosystems QuantStudio™
  • Agilent AriaMx
  • Douglas Scientific IntelliQube®
  • Applied Biosystems 5700
  • Applied Biosystems 7000
  • Applied Biosystems 7300
  • Applied Biosystems 7700
  • Applied Biosystems 7900
  • Applied Biosystems 7900HT
  • Applied Biosystems 7900 HT Fast
  • Applied Biosystems StepOne™
  • Applied Biosystems StepOnePlus™
  • Quantabio Q
  • BioRad CFX
  • Roche LightCycler 480
  • QIAGEN Rotor-Gene Q
  • Other
  • BioRad iCycler iQ™
  • BioRad MyiQ™
  • BioRad iQ™5

Choose your application from the categories below

Products