array(52) {
  string(6) "Apache"
  string(36) "/product/qscript-cdna-synthesis-kit/"
  string(49) "/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin"
  string(48) "/var/www/vhosts/system/"
  string(19) "plesk-php74-fastcgi"
  string(10) "/index.php"
  string(0) ""
  string(3) "GET"
  string(8) "HTTP/1.1"
  string(7) "CGI/1.1"
  string(36) "/product/qscript-cdna-synthesis-kit/"
  string(5) "45874"
  string(48) "/var/www/vhosts/"
  string(14) "root@localhost"
  string(38) "/var/www/vhosts/"
  string(0) ""
  string(5) "https"
  string(38) "/var/www/vhosts/"
  string(13) ""
  string(3) "443"
  string(13) ""
  string(17) ""
  string(0) ""
  string(17) ""
  string(13) ""
  string(13) ""
  string(5) "close"
  string(5) "https"
  string(13) ""
  string(2) "US"
  string(40) "CCBot/2.0 ("
  string(63) "text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8"
  string(14) "en-US,en;q=0.5"
  string(7) "br,gzip"
  string(17) ""
  string(2) "on"
  string(0) ""
  string(61) ""
  string(36) "/product/qscript-cdna-synthesis-kit/"
  string(27) "YvrD@dr0@kt4uxYZ0MPQFwAAAAQ"
  string(3) "200"
  string(17) ""
  string(2) "on"
  string(0) ""
  string(61) ""
  string(36) "/product/qscript-cdna-synthesis-kit/"
  string(27) "YvrD@dr0@kt4uxYZ0MPQFwAAAAQ"
  string(9) "RESPONDER"
  string(10) "/index.php"
  string(13) ""

qScript cDNA Synthesis Kit

Economical 2-component kit ideally suited for high throughput gene-expression studies
Features & Benefits
  • Economical 2-component kit ideally suited for high throughput expression studies
  • Optimized, double pre-primed master mix component ensures equal representation of 5′ and 3′ RNA sequences ≤ 1kb for quantitative and conventional two-step RT-PCR
  • Broad linear dynamic detection range with limiting (10pg) or plentiful (1ug) samples of total RNA


qScript cDNA Synthesis Kit is intended for molecular biology applications. This product is not intended for the diagnosis, prevention or treatment of a disease.

Kit Size
Order Info
Kit Size
Order Info
qScript cDNA Synthesis Kit
Request Sample
Kit Size:
Order Info:
25 x 20 μL rxns (1 x 25 µL)
100 x 20 μL rxns (1 x 100 µL)
500 x 20 μL rxns (1 x 500 µL)


The qScript cDNA Synthesis Kit is a sensitive and easy-to-use solution for RNA quantification using two step RT-qPCR. The novel qScript Reaction Mix provides all the necessary components for cDNA synthesis except enzyme and RNA template. qScript reverse transcriptase is a mixture of an engineered MMLV RT and a ribonuclease inhibitor protein. This economical, highly stable stabilize, 2-component reagent system has been rigorously optimized to ensure sensitive and linear RNA detection with a wide-range of input RNA and relative abundance. Reagent performance is unaffected by repetitive freeze/thaw cycling (>20X), conferring greater ease-of-use and assay performance consistency. Oligo (dT) and random primers are pre-blended in a precise ratio to provide equal representation of 5' and 3'-sequences for accurate gene expression quantification. The resulting cDNA product is directly compatible with all qPCR chemistries or conventional end-point RT-PCR of amplified fragments ≤1 kb in length.

For gene-specific priming (GSP) or two-step RT-PCR of RNA exceeding 1kb in total length, see our qScript® Flex cDNA Kit.



  • 5X concentrated master mix containing: titered primer blend (oligo dT(20) and random hexamer), qPCR-optimized dNTP blend and flexible magnesium titration
  • 20X concentrated qScript reverse transcriptase
  • Nuclease-free water


  • 5X concentrated master mix containing: titered primer blend (oligo dT(20) and random hexamer), qPCR-optimized dNTP blend and flexible magnesium titration
  • 20X concentrated qScript reverse transcriptase
  • Nuclease-free water

Performance Data



Product Manuals

Technical Notes

CofA (PSFs)

Click here to see all CofA (PSFs)



  • Does the qScript™ cDNA Synthesis Kit include an RNase Inhibitor like the qScript™ cDNA SuperMix?
    Both kits contain an RNase inhibitor protein. qScript™ cDNA SuperMix is provided as a single tube reaction of 5X concentrated master mix. It provides all necessary components for first-strand synthesis including: buffer, dNTPs, MgCl2, primers, RNase inhibitor protein, qScript reverse transcriptase and stabilizers (except RNA template) . In the case of the qScript™ cDNA Synthesis Kit, Rnase inhibitor is premixed with the reverse transcriptase and is provided as a concentrated enzyme.
  • For first strand cDNA synthesis, is it better to use oligo(dT), random hexamers, gene specific primer (GSP) or combination of these primers?
    The choice of primer depends on your experimental goals. Oligo(dT) is recommended when using total RNA for cDNA synthesis. It is the key to full-length cDNA synthesis. Random hexamers give a series of short first-strand products spanning the entire mRNA. Use of random hexamers may be helpful if the PCR fragment is at the 5´ end of a large mRNA. To ensure full-length cDNA synthesis of large transcripts, oligo(dT) can be added along with random hexamers during first-strand synthesis. Gene specific primers (GSP) for cDNA synthesis may also be used and are required in a few applications such as 5´ RACE and qRT-PCR. For GC-rich templates, or templates rich in secondary structure, a GSP may not work as well as priming with oligo dT for first strand synthesis. If an RT-PCR is problematic, trying different options of oligo dT, random primers and/or GSP for priming first strand synthesis may find a solution. Oligo(dT)20 primer (Cat. No. 18418-020) is recommended for use with SuperScript III Reverse Transcriptase
  • What is the smallest quantity of RNA detectable by the qScript™ cDNA Synthesis Kit?
    Lower limits of detection by the qScript™ cDNA Synthesis Kit are dependent on many factors, such as primer design, target size, and the abundance of message. However, this system was able to detect GAPDH mRNA from as little as 1.0 pg of total HeLa RNA when used in conjunction with AccuStart Taq DNA Polymerase.
  • What is the RNA input for the qScript cDNA Synthesis Kit?
    The qScript cDNA Synthesis Kit provides for the quantitative conversion of 1µg to 10 pg total RNA to cDNA, with a reaction volume of 20 ul.
  • Publications

    Engineered Exosomes Containing Cathelicidin/LL-37 Exhibit Multiple Biological Functions
    Yajuan Su - 2022
    Exosomes show great potential in diagnostic and therapeutic applications. Inspired by human innate immune defense, herein, we report engineered exosomes-derived from monocytic cells treated with immunomodulating compounds 1,25-dihydroxyvitamin D3 and CYP24A1 inhibitor VID400 which are slowly released from electrospun nanofiber matrices. These engineered exosomes contain significantly more cathelicidin/LL-37 when compared with exosomes-derived from either untreated cells or Cathelicidin Human Tagged ORF Clone transfected cells. In addition, such exosomes exhibit multiple biological functions evidenced by killing bacteria, facilitating human umbilical vein endothelial cell tube formation, and enhancing skin cell proliferation and migration. Taken together, the engineered exosomes developed in this study could be used as therapeutics alone or in combination with other biomaterials for effective infection management, wound healing, and tissue regeneration.
    Characterizing Novel Kras/p53 Derived NSCLC Cell Lines
    Quincyn Perry - 2022
    Lung cancer is the leading cause of cancer-related death. It is the second most common cancer in both men and women. Non-small cell lung cancer (NSCLC) is the most common lung cancer at ~85%; with 40% adenocarcinomas and of these 25% are caused by a KRas mutation. The lethality of lung cancer is due to its propensity to metastasize. At time of diagnosis most patients present with late stage cancer which has already metastasized.
    High Levels of Progesterone Receptor B in MCF‐7 Cells Enable Radical Anti‐Tumoral and Anti‐Estrogenic Effect of Progestin
    Natasa Bajalovic - 2022
    The widely reported conflicting effects of progestin on breast cancer suggest that the progesterone receptor (PR) has dual functions depending on the cellular context. Cell models that enable PR to fully express anti‐tumoral properties are valuable for the understanding of molecular determinant(s) of the anti‐tumoral property. This study evaluated whether the expression of high levels of PR in MCF‐7 cells enabled a strong anti‐tumoral response to progestin. MCF‐7 cells were engineered to overexpress PRB by stable transfection. A single dose of Promegestone (R5020) induced an irreversible cell growth arrest and senescence‐associated secretory phenotype in MCF‐7 cells with PRB overexpression (MCF‐7PRB cells) but had no effect on MCF‐7 cells with PRA overexpression. The growth‐arresting effect was associated with downregulations of cyclin A2 and B1, CDK2, and CDK4 despite an initial upregulation of cyclin A2 and B1. R5020 also induced an evident activation of Nuclear Factor κB (NF‐κB) and upregulation of interleukins IL‐1α, IL‐1β, and IL‐8. Although R5020 caused a significant increase of CD24+CD44+ cell population, R5020‐treated MCF‐7PRB cells were unable to form tumorspheres and underwent massive apoptosis, which is paradoxically associated with marked downregulations of the pro‐apoptotic proteins BID, BAX, PARP, and Caspases 7 and 8, as well as diminution of anti‐apoptotic protein BCL‐2. Importantly, R5020‐activated PRB abolished the effect of estrogen. This intense anti‐estrogenic effect was mediated by marked downregulation of ERα and pioneer factor FOXA1, leading to diminished chromatin‐associated ERα and FOXA1 and estrogen‐induced target gene expression. In conclusion, high levels of agonist‐activated PRB in breast cancer cells can be strongly anti‐tumoral and anti‐estrogenic despite the initial unproductive cell cycle acceleration. Repression of ERα and FOXA1 expression is a major mechanism for the strong anti‐estrogenic effect.
    Evaluation of transplacental transfer of mRNA vaccine products and functional antibodies during pregnancy and infancy
    Mary Prahl - 2022
    Studies are needed to evaluate the safety and effectiveness of mRNA SARS-CoV-2 vaccination during pregnancy, and the levels of protection provided to their newborns through placental transfer of antibodies. Here, we evaluate the transplacental transfer of mRNA vaccine products and functional anti-SARS-CoV-2 antibodies during pregnancy and early infancy in a cohort of 20 individuals vaccinated during late pregnancy. We find no evidence of mRNA vaccine products in maternal blood, placenta tissue, or cord blood at delivery. However, we find time-dependent efficient transfer of IgG and neutralizing antibodies to the neonate that persists during early infancy. Additionally, using phage immunoprecipitation sequencing, we find a vaccine-specific signature of SARS-CoV-2 Spike protein epitope binding that is transplacentally transferred during pregnancy. Timing of vaccination during pregnancy is critical to ensure transplacental transfer of protective antibodies during early infancy.
    Dor Rafael - 2022
    Latent infection is a characteristic feature of herpesviruses’ life cycle. Herpes simplex virus 1 is a common human pathogen that establishes lifelong latency in peripheral neurons. Symptomatic or asymptomatic periodic reactivations from the latent state allow the virus to replicate and spread among individuals. The latent viral genomes are found as several quiescent episomes inside the infected nuclei; however, it is not clear if and how many latent genomes are able to reactivate together. To address this question, we developed a quiescent infection assay, which provides a quantitative analysis of the number of genomes reactivating per cell, in cultured immortalized fibroblasts. We found that, almost always, only one viral genome reactivates per cell. We showed that different timing of entry to quiescence did not result in a significant change in the probability of reactivating. Reactivation from this quiescent state allowed only limited intergenomic recombination between two viral strains compared to lytic infection. Following coinfection with a mutant that is unable to reactivate, only coreactivation with a reactivation-proficient recombinant can provide the opportunity for the mutant to reactivate. We speculate that each individual quiescent viral genome has a low and stochastic chance to reactivate in each cell, an assumption that can explain the limited number of genomes reactivating per cell. IMPORTANCE Herpesviruses are highly prevalent and cause significant morbidity in the human and animal populations. Most individuals who are infected with herpes simplex virus (HSV-1), a common human pathogen, will become lifelong carriers of the virus, as HSV-1 establishes latent (quiescent) infections in the host cells. Reactivation from the latent state leads to many of the viral symptoms and to the spread of the virus among individuals. While many triggers for reactivation were identified, how many genomes reactivate from an individual cell and how are these genomes selected remain understudied. Here, we identify that, in most cases, only one genome per cell reactivates. Mutated HSV-1 genomes require coinfection with another strain to allow coreactivation. Our findings suggest that the decision to reactivate is determined for each quiescent genome separately and support the notion that reactivation preferences occur at the single-genome level.
    The primary macrophage chemokine, CCL2, is not necessary after a peripheral nerve injury for macrophage recruitment and activation or for conditioning lesion enhanced peripheral regeneration
    Aaron D. Talsma - 2022
    Background Peripheral nerve injuries stimulate the regenerative capacity of injured neurons through a neuroimmune phenomenon termed the conditioning lesion (CL) response. This response depends on macrophage accumulation in affected dorsal root ganglia (DRGs) and peripheral nerves. The macrophage chemokine CCL2 is upregulated after injury and is allegedly required for stimulating macrophage recruitment and pro-regenerative signaling through its receptor, CCR2. In these tissues, CCL2 is putatively produced by neurons in the DRG and Schwann cells in the distal nerve. Methods Ccl2fl/fl mice were crossed with Advillin-Cre, P0-Cre, or both to create conditional Ccl2 knockouts (CKOs) in sensory neurons, Schwann cells, or both to hypothetically remove CCL2 and macrophages from DRGs, nerves or both. CCL2 was localized using Ccl2–RFPfl/fl mice. CCL2–CCR2 signaling was further examined using global Ccl2 KOs and Ccr2gfp knock-in/knock-outs. Unilateral sciatic nerve transection was used as the injury model, and at various timepoints, chemokine expression, macrophage accumulation and function, and in vivo regeneration were examined using qPCR, immunohistochemistry, and luxol fast blue staining. Results Surprisingly, in all CKOs, DRG Ccl2 gene expression was decreased, while nerve Ccl2 was not. CCL2–RFP reporter mice revealed CCL2 expression in several cell types beyond the expected neurons and Schwann cells. Furthermore, macrophage accumulation, myelin clearance, and in vivo regeneration were unaffected in all CKOs, suggesting CCL2 may not be necessary for the CL response. Indeed, Ccl2 global knockout mice showed normal macrophage accumulation, myelin clearance, and in vivo regeneration, indicating these responses do not require CCL2. CCR2 ligands, Ccl7 and Ccl12, were upregulated after nerve injury and perhaps could compensate for the absence of Ccl2. Finally, Ccr2gfp knock-in/knock-out animals were used to differentiate resident and recruited macrophages in the injured tissues. Ccr2gfp/gfp KOs showed a 50% decrease in macrophages in the distal nerve compared to controls with a relative increase in resident macrophages. In the DRG there was a small but insignificant decrease in macrophages. Conclusions CCL2 is not necessary for macrophage accumulation, myelin clearance, and axon regeneration in the peripheral nervous system. Without CCL2, other CCR2 chemokines, resident macrophage proliferation, and CCR2-independent monocyte recruitment can compensate and allow for normal macrophage accumulation.
    The splicing factor RBM17 drives leukemic stem cell maintenance by evading nonsense-mediated decay of pro-leukemic factors
    Lina Liu - 2022
    Chemo-resistance in acute myeloid leukemia (AML) patients is driven by leukemic stem cells (LSCs) resulting in high rates of relapse and low overall survival. Here, we demonstrate that upregulation of the splicing factor, RBM17 preferentially marks and sustains LSCs and directly correlates with shorten patient survival. RBM17 knockdown in primary AML cells leads to myeloid differentiation and impaired colony formation and in vivo engraftment. Integrative multi-omics analyses show that RBM17 repression leads to inclusion of poison exons and production of nonsense-mediated decay (NMD)-sensitive transcripts for pro-leukemic factors and the translation initiation factor, EIF4A2. We show that EIF4A2 is enriched in LSCs and its inhibition impairs primary AML progenitor activity. Proteomic analysis of EIF4A2-depleted AML cells shows recapitulation of the RBM17 knockdown biological effects, including pronounced suppression of proteins involved in ribosome biogenesis. Overall, these results provide a rationale to target RBM17 and/or its downstream NMD-sensitive splicing substrates for AML treatment.
    In Vivo Genome-Wide PGR Binding in Pregnant Human Myometrium Identifies Potential Regulators of Labor
    Arial J. Dotts - 2022
    The alterations in myometrial biology during labor are not well understood. The myometrium is the contractile portion of the uterus and contributes to labor, a process that may be regulated by the steroid hormone progesterone. Thus, human myometrial tissues from term pregnant in-active-labor (TIL) and term pregnant not-in-labor (TNIL) subjects were used for genome-wide analyses to elucidate potential future preventive or therapeutic targets involved in the regulation of labor. Using myometrial tissues directly subjected to RNA sequencing (RNA-seq), progesterone receptor (PGR) chromatin immunoprecipitation sequencing (ChIP-seq), and histone modification ChIP-seq, we profiled genome-wide changes associated with gene expression in myometrial smooth muscle tissue in vivo. In TIL myometrium, PGR predominantly occupied promoter regions, including the classical progesterone response element, whereas it bound mainly to intergenic regions in TNIL myometrial tissue. Differential binding analysis uncovered over 1700 differential PGR-bound sites between TIL and TNIL, with 1361 sites gained and 428 lost in labor. Functional analysis identified multiple pathways involved in cAMP-mediated signaling enriched in labor. A three-way integration of the data for ChIP-seq, RNA-seq, and active histone marks uncovered the following genes associated with PGR binding, transcriptional activation, and altered mRNA levels: ATP11A, CBX7, and TNS1. In vitro studies showed that ATP11A, CBX7, and TNS1 are progesterone responsive. We speculate that these genes may contribute to the contractile phenotype of the myometrium during various stages of labor. In conclusion, we provide novel labor-associated genome-wide events and PGR-target genes that can serve as targets for future mechanistic studies.
    O-GlcNAc transferase maintains metabolic homeostasis in response to CDK9 inhibition
    Aishwarya Gondane - 2022
    Co-targeting of O-GlcNAc transferase (OGT) and the transcriptional kinase CDK9 is toxic to prostate cancer cells. As OGT is an essential glycosyltransferase, identifying an alternative target showing similar effects is of great interest. Here, we used a multiomics approach (transcriptomics, metabolomics and proteomics) to better understand the mechanistic basis of the combinatorial lethality between OGT and CDK9 inhibition. CDK9 inhibition preferentially affected transcription. In contrast, depletion of OGT activity predominantly remodeled the metabolome. Using an unbiased systems biology approach (weighted gene correlation network analysis), we discovered that CDK9 inhibition alters mitochondrial activity / flux, and high OGT activity is essential to maintain mitochondrial respiration when CDK9 activity is depleted. Our metabolite profiling data revealed that pantothenic acid (vitamin B5) is the metabolite that is most robustly induced by both OGT and OGT+CDK9 inhibitor treatments, but not by CDK9 inhibition alone. Finally, supplementing prostate cancer cell lines with vitamin B5 in the presence of CDK9 inhibitor mimics the effects of co-targeting OGT and CDK9.
    Prebiotic Modulation of Intestinal Permeability
    Rebecca Zasloff - 2022
    The maintenance of a functional intestinal barrier is critical to overall health, as a “leaky gut”, often a result of age-associated defects in intestinal barrier integrity, can lead to systemic health problems, including dysregulated inflammation and infections. The gut barrier is modulated by host factors, including mucin and tight junction proteins, and by members of the gut microbiota that may influence the expression of genes associated with intestinal permeability. While use of dietary prebiotics is becoming a popular method to beneficially modulate the gut microbiota, it is unclear how these complex carbohydrates can improve gut physiology. In this study, we characterized the effects of dietary prebiotics galactooligosaccharides (GOS) and LacNAc-enriched galacto-oligosaccharides (humanized, hGOS) on intestinal permeability in mice. FITC-dextran assays showed that GOS and hGOS restored intestinal barrier function in aging animals. However, a histology approach to visualize and quantify mucin within intestinal sections, revealed that GOS-fed animals had more mucus than hGOS or control-fed animals. Finally, reverse transcription qPCR assays were performed to determine gene expression of permeability associated genes, including mucin and tight junction proteins in prebiotic-fed animals. This work provides valuable insights into how intestinal permeability can be modulated by dietary prebiotics.
    Tito Habib - 2022
    Background Natural products are considered the most successful source of potential drug leads. Accordingly, the present study investigated the potential antidiabetic effect of the Egyptian honey bee venom fraction known as bradykinin potentiating factor (BPF) in streptozotocin-induced (STZ) diabetic rats. Materials & Methods An in vivo study was performed on fifty albino male rats that were divided into five groups. (G1): vehicle control animals, (G2): diabetic STZ-induced group, (G3): nondiabetic BPF-treated group, (G4): BPFinjected animals and post-treated with STZ, (G5): STZ-injected animals and post-treated with BPF. Plasma glucose levels and ALT, AST, C reactive protein (C-RP), apelin, and resistin gene expression in BPFtreated rats were evaluated and compared to STZ-treated diabetic rats and vehicle control rats. The plasma protein profile of the five animal groups was investigated by sodium dodecyl sulfate Polyacrylamide gel electrophoresis (SDS-PAGE). Results The data indicated that the STZ-treated (G2) group showed a highly significant increase in the levels of plasma glucose, ALT, and AST compared to the BPF-treated (G3, G4, G5), and nondiabetic control (G1) groups. Quantitative reverse transcription PCR (RT-qPCR) was carried out to amplify the apelin and resistin genes with an internal reference gene (18S rRNA) using a real-time PCR system. The concentrations of C-RP (28.3 kDa) and apelin (16 kDa) proteins observed by SDS-PAGE were higher than those of apelin, and resistin gene expression was revealed by RT-qPCR in STZ-treated (G2) rats compared with BPF-treated (G4, G5) and negative control (G1) rats. Conclusion The study concluded the importance of BPF, which has therapeutic and protective effects against STZ-induced diabetes complications. The hypoglycemic effect is revealed by the improvement of the biochemical and genetic markers, which may be attributed to BPF against diabetes complications.
    The Role of Mediator Kinases CDK8/19 in the Acquired Resistance to CDK4/6 Targeting Drugs in Breast Cancer
    Kaitlyn Digsby - 2022
    Breast cancer remains the highest cause of worldwide cancer-related mortality. Unfortunately, acquired therapeutic resistance occurs in the majority of cases of estrogen receptor-positive breast cancer. An effort to discover drugs which act synergistically with Palbociclib and prevent the development of resistance and tumor growth is essential to improving patient outcomes. Cyclin dependent kinases (CDK) 8 and 19 are Mediator complex proteins. The Mediator complex is an enzymatic module regulating transcription. The goal of the research is to elucidate the mechanism by which CDK8/19 inhibitor, SNX631, prevents acquired resistance to CDK4/6 inhibitor, Palbociclib. The present study aims to elucidate the role of the senescence-associated secretory phenotype (SASP) in Palbociclib resistance, and furthermore, to investigate if SASP is mitigated by a novel CDK8/19 inhibitor, SNX631. It was determined that SASP was suppressed by Palbociclib and therefore not a contributor to resistance. TGF-B, a member of SASP, was identified as a key modulator of both tumorigenesis and cell cycle arrest in breast cancer. The possibility that SNX631 suppresses TGF-B signaling to prevent Palbociclib resistance was explored. Overall, it was determined that SNX631 suppresses TGF-B/Smad3 signalingpreventing changes to TGF-B signaling that occur throughout Palbociclib treatment. Lastly, alternative mechanisms of Palbociclib resistance are present, and they should be further explored in the context of SNX631.
    CO2 induced seawater acidification impacts survival and development of European eel embryos
    Daniela E. Sganga - 2022
    Fish embryos may be vulnerable to seawater acidification resulting from anthropogenic carbon dioxide (CO2) emissions or from excessive biological CO2 production in aquaculture systems. This study investigated CO2 effects on embryos of the European eel (Anguilla anguilla), a catadromous fish that is considered at risk from climate change and that is targeted for hatchery production to sustain aquaculture of the species. Eel embryos were reared in three independent recirculation systems with different pH/CO2 levels representing “control” (pH 8.1, 300 μatm CO2), end-of-century climate change (“intermediate”, pH 7.6, 900 μatm CO2) and “extreme” aquaculture conditions (pH 7.1, 3000 μatm CO2). Sensitivity analyses were conducted at 4, 24, and 48 hours post-fertilization (hpf) by focusing on development, survival, and expression of genes related to acute stress response (crhr1, crfr2), stress/repair response (hsp70, hsp90), water and solute transport (aqp1, aqp3), acid-base regulation (nkcc1a, ncc, car15), and inhibitory neurotransmission (GABAAα6b, Gabra1). Results revealed that embryos developing at intermediate pH showed similar survival rates to the control, but egg swelling was impaired, resulting in a reduction in egg size with decreasing pH. Embryos exposed to extreme pH had 0.6-fold decrease in survival at 24 hpf and a 0.3-fold change at 48 compared to the control. These observed effects of acidification were not reflected by changes in expression of any of the here studied genes. On the contrary, differential expression was observed along embryonic development independent of treatment, indicating that the underlying regulating systems are under development and that embryos are limited in their ability to regulate molecular responses to acidification. In conclusion, exposure to predicted end-of-century ocean pCO2 conditions may affect normal development of this species in nature during sensitive early life history stages with limited physiological response capacities, while extreme acidification will negatively influence embryonic survival and development under hatchery conditions.
    A dual-function phage regulator controls the response of cohabiting phage elements via regulation of the bacterial SOS response
    Gil Azulay - 2022
    Listeria monocytogenes strain 10403S harbors two phage elements in its chromosome; one produces infective virions and the other tailocins. It was previously demonstrated that induction of the two elements is coordinated, as they are regulated by the same anti-repressor. In this study, we identified AriS as another phage regulator that controls the two elements, bearing the capacity to inhibit their lytic induction under SOS conditions. AriS is a two-domain protein that possesses two distinct activities, one regulating the genes of its encoding phage and the other downregulating the bacterial SOS response. While the first activity associates with the AriS N-terminal AntA/AntB domain, the second associates with its C-terminal ANT/KilAC domain. The ANT/KilAC domain is conserved in many AriS-like proteins of listerial and non-listerial prophages, suggesting that temperate phages acquired such dual-function regulators to align their response with the other phage elements that cohabit the genome.
    CO2 induced seawater acidification impacts survival and development of European eel embryos
    Daniela E. Sganga - 2022
    Fish embryos may be vulnerable to seawater acidification resulting from anthropogenic carbon dioxide (CO2) emissions or from excessive biological CO2 production in aquaculture systems. This study investigated CO2 effects on embryos of the European eel (Anguilla anguilla), a catadromous fish that is considered at risk from climate change and that is targeted for hatchery production to sustain aquaculture of the species. Eel embryos were reared in three independent recirculation systems with different pH/CO2 levels representing “control” (pH 8.1, 300 μatm CO2), end-of-century climate change (“intermediate”, pH 7.6, 900 μatm CO2) and “extreme” aquaculture conditions (pH 7.1, 3000 μatm CO2). Sensitivity analyses were conducted at 4, 24, and 48 hours post-fertilization (hpf) by focusing on development, survival, and expression of genes related to acute stress response (crhr1, crfr2), stress/repair response (hsp70, hsp90), water and solute transport (aqp1, aqp3), acid-base regulation (nkcc1a, ncc, car15), and inhibitory neurotransmission (GABAAα6b, Gabra1). Results revealed that embryos developing at intermediate pH showed similar survival rates to the control, but egg swelling was impaired, resulting in a reduction in egg size with decreasing pH. Embryos exposed to extreme pH had 0.6-fold decrease in survival at 24 hpf and a 0.3-fold change at 48 compared to the control. These observed effects of acidification were not reflected by changes in expression of any of the here studied genes. On the contrary, differential expression was observed along embryonic development independent of treatment, indicating that the underlying regulating systems are under development and that embryos are limited in their ability to regulate molecular responses to acidification. In conclusion, exposure to predicted end-of-century ocean pCO2 conditions may affect normal development of this species in nature during sensitive early life history stages with limited physiological response capacities, while extreme acidification will negatively influence embryonic survival and development under hatchery conditions.
    Sulforaphane alleviates hypoxic vestibular vertigo (HVV) by increasing NO production via upregulating the expression of NRF2
    Liyuan Zhou - 2022
    Sulforaphane (SFP) treatment represses oxidative stress by activating NRF2. Meanwhile, SFP may also increase the production of nitric oxide (NO) and activate the signaling pathway of cyclic guanosine monophosphate (cGMP), which is involved in the pathogenesis of hypoxic vestibular vertigo (HVV). However, it remains unknown as whether SFP plays a therapeutic role in the treatment of HVV. A rat model of HVV was established to measure the levels of escape latency, malondialdehyde (MDA), glutathione (GSH) and superoxide dismutase (SOD) in the aorta tissues. Quantitative real-time PCR was performed to evaluate the expression of NRF2 mRNA, and Western blot and immunohistochemistry were carried out to analyze the expression of NRF2 protein. ELISA was used to examine the production of NO and cGMP. SFP treatment helped to maintain the escape latency and MDA, GSH, SOD concentrations in the brain of HVV rats, and recovered the expression of NRF2 inhibited in the brain of HVV rats. SFP treatment also elevated NO and cGMP production that was down-regulated in the brain of HVV rats. On the cellular level, SFP enhanced the expression of NRF2, reduced the concentrations of MDA, GSH and SOD, and promoted the production of NO and cGMP in a dose-dependent manner. In this study, we treated an animal model of HVV with SFP to investigate its effect on NO production and oxidative stress. Our work provided a mechanistic insight into the therapeutic effect of SFP on the treatment of HVV.
    A disease-driver population within interstitial cells of human calcific aortic valves identified via single-cell and proteomic profiling
    Julius L. Decano - 2022
    Cellular heterogeneity of aortic valves complicates the mechanistic evaluation of the calcification processes in calcific aortic valve disease (CAVD), and animal disease models are lacking. In this study, we identify a disease-driver population (DDP) within valvular interstitial cells (VICs). Through stepwise single-cell analysis, phenotype-guided omic profiling, and network-based analysis, we characterize the DDP fingerprint as CD44highCD29+CD59+CD73+CD45low and discover potential key regulators of human CAVD. These DDP-VICs demonstrate multi-lineage differentiation and osteogenic properties. Temporal proteomic profiling of DDP-VICs identifies potential targets for therapy, including MAOA and CTHRC1. In vitro loss-of-function experiments confirm our targets. Such a stepwise strategy may be advantageous for therapeutic target discovery in other disease contexts.
    Molecular and Functional Signatures Associated with CAR T Cell Exhaustion and Impaired Clinical Response in Patients with B Cell Malignancies
    Katia Beider - 2022
    Despite the high rates of complete remission following chimeric antigen receptor (CAR) T cell therapy, its full capacity is currently limited by the generation of dysfunctional CAR T cells. Senescent or exhausted CAR T cells possess poor targeting and effector functions, as well as impaired cell proliferation and persistence in vivo. Strategies to detect, prevent or reverse T cell exhaustion are therefore required in order to enhance the effectiveness of CAR T immunotherapy. Here we report that CD19 CAR T cells from non-responding patients with B cell malignancies show enrichment of CD8+ cells with exhausted/senescent phenotype and display a distinct transcriptional signature with dysregulation of genes associated with terminal exhaustion. Furthermore, CAR T cells from non-responding patients exhibit reduced proliferative capacity and decreased IL-2 production in vitro, indicating functional impairment. Overall, our work reveals potential mediators of resistance, paving the way to studies that will enhance the efficacy and durability of CAR T therapy in B cell malignancies.
    Bioreactor and Small Molecule Drug Applications in Hair Cell Differentiation
    Sylvia Yip - 2021
    Hair cells are mechanoreceptors of the inner ear that convert sounds into electrical signals to be perceived by the brain. The gradual loss of hair cells is common after a lifetime of chronic exposure to loud noises. Mammalian hair cells lack the ability to regenerate after embryonic development. Advancements in regenerative medicine strategies have been employed to restore function to damaged organs. The use of stem cells can regenerate and replace damaged hair cells. Understanding how stem cells differentiate into hair cells will provide insight into regeneration. To study hair cell regeneration, we employed an inner ear organoid system. Immortalized multipotent otic progenitor (iMOP) cells that differentiate into spiral ganglion neurons, supporting cells, and hair cells were used to generate organoids. This study tests whether a bioreactor facilitates sensory epithelial differentiation. The bioreactor agitates the medium to promote nutrient diffusion in the cultures. After ten days of differentiation, iMOP-derived organoids were collected, and relative changes in transcripts and protein markers that correspond to neurons, supporting cells, and hair cells were determined. The use of a bioreactor increased the percentage of cells expressing MYO6, a hair cell marker. The percentage of TUBB3 labeled neurons also increased while GFAP labeled supporting cells remained the same. Relative levels of Myo6 mRNA did not increase in any of the culture conditions while relative levels of Tubb3 mRNA significantly increased in all cultures compared to control samples. Although molecular mechanisms are unknown, the study shows that use of the bioreactor improves hair cell differentiation in otic progenitor-derived organoids.
    Carbonic anhydrase and soluble adenylate cyclase regulation of cystic fibrosis cellular phenotypes
    Kathleen Boyne - 2022
    Several aspects of the cell biology of cystic fibrosis (CF) epithelial cells are altered including impaired lipid regulation, disrupted intracellular transport, and impaired microtubule regulation. It is unclear how the loss of cystic fibrosis transmembrane conductance regulator (CFTR) function leads to these differences. It is hypothesized that the loss of CFTR function leads to altered regulation of carbonic anhydrase (CA) activity resulting in cellular phenotypic changes. In this study, it is demonstrated that CA2 protein expression is reduced in CF model cells, primary mouse nasal epithelial (MNE) cells, excised MNE tissue, and primary human nasal epithelial cells (p<0.05). This corresponds to a decrease in CA2 RNA expression measured by qPCR as well as an overall reduction in CA activity in primary CF MNEs. The addition of CFTR inhibitor-172 to WT MNE cells for ≥24 h mimics the significantly lower protein expression of CA2 in CF cells. Treatment of CF cells with L-Phenylalanine (L-Phe), an activator of CA activity, restores endosomal transport through an effect on microtubule regulation in a manner dependent on soluble adenylate cyclase (sAC). This effect can be blocked with the CA2- selective inhibitor dorzolamide. These data suggest the loss of CFTR function leads to the decreased expression of CA2 resulting in the downstream cell signaling alterations observed in CF.
    Microbial pathogens induce neurodegeneration in Alzheimer’s disease mice: protection by microglial regulation
    Tal Ganz - 2022
    Background Neurodegeneration is considered the consequence of misfolded proteins’ deposition. Little is known about external environmental effects on the neurodegenerative process. Infectious agent-derived pathogen-associated molecular patterns (PAMPs) activate microglia, key players in neurodegenerative diseases. We hypothesized that systemic microbial pathogens may accelerate neurodegeneration in Alzheimer’s disease (AD) and that microglia play a central role in this process. Methods We examined the effect of an infectious environment and of microbial Toll-like receptor (TLR) agonists on cortical neuronal loss and on microglial phenotype in wild type versus 5xFAD transgenic mice, carrying mutated genes associated with familial AD. Results We examined the effect of a naturally bred environment on the neurodegenerative process. Earlier and accelerated cortical neuron loss occurred in 5xFAD mice housed in a natural (“dirty”) environment than in a specific-pathogen-free (SPF) environment, without increasing the burden of Amyloid deposits and microgliosis. Neuronal loss occurred in a microglia-rich cortical region but not in microglia-poor CA regions of the hippocampus. Environmental exposure had no effect on cortical neuron density in wild-type mice. To model the neurodegenerative process caused by the natural infectious environment, we injected systemically the bacterial endotoxin lipopolysaccharide (LPS), a TLR4 agonist PAMP. LPS caused cortical neuronal death in 5xFAD, but not wt mice. We used the selective retinoic acid receptor α agonist Am580 to regulate microglial activation. In primary microglia isolated from 5xFAD mice, Am580 markedly attenuated TLR agonists-induced iNOS expression, without canceling their basic immune response. Intracerebroventricular delivery of Am580 in 5xFAD mice reduced significantly the fraction of (neurotoxic) iNOS + microglia and increased the fraction of (neuroprotective) TREM2 + microglia. Furthermore, intracerebroventricular delivery of Am580 prevented neurodegeneration induced by microbial TLR agonists. Conclusions Exposure to systemic infections causes neurodegeneration in brain regions displaying amyloid pathology and high local microglia density. AD brains exhibit increased susceptibility to microbial PAMPs’ neurotoxicity, which accelerates neuronal death. Microglial modulation protects the brain from microbial TLR agonist PAMP-induced neurodegeneration.
    Osteogenic lithium-doped brushite cements for bone regeneration
    K. Hurle - 2021
    This study investigated the osteogenic performance of new brushite cements obtained from Li+-doped β-tricalcium phosphate as a promising strategy for bone regeneration. Lithium (Li+) is a promising trace element to encourage the migration and proliferation of adipose-derived stem cells (hASCs) and the osteogenic differentiation-related gene expression, essential for osteogenesis. In-situ X-ray diffraction (XRD) and in-situ 1H nuclear magnetic resonance (1H NMR) measurements proved the precipitation of brushite, as main phase, and monetite, indicating that Li+ favored the formation of monetite under certain conditions. Li+ was detected in the remaining pore solution in significant amounts after the completion of hydration. Isothermal calorimetry results showed an accelerating effect of Li+, especially for low concentration of the setting retarder (phytic acid). A decrease of initial and final setting times with increasing amount of Li+ was detected and setting times could be well adjusted by varying the setting retarder concentration. The cements presented compressive mechanical strength within the ranges reported for cancellous bone. In vitro assays using hASCs showed normal metabolic and proliferative levels. The immunodetection and gene expression profile of osteogenic-related markers highlight the incorporation of Li+ for increasing the in vivo bone density. The osteogenic potential of Li-doped brushite cements may be recommended for further research on bone defect repair strategies.
    The Non-Erythropoietic EPO Analogue Cibinetide Inhibits Osteoclastogenesis In Vitro and Increases Bone Mineral Density in Mice
    Zamzam Awida - 2021
    The two erythropoietin (EPO) receptor forms mediate different cellular responses to erythropoietin. While hematopoiesis is mediated via the homodimeric EPO receptor (EPOR), tissue protection is conferred via a heteromer composed of EPOR and CD131. In the skeletal system, EPO stimulates osteoclast precursors and induces bone loss. However, the underlying molecular mechanisms are still elusive. Here, we evaluated the role of the heteromeric complex in bone metabolism in vivo and in vitro by using Cibinetide (CIB), a non-erythropoietic EPO analogue that exclusively binds the heteromeric receptor. CIB is administered either alone or in combination with EPO. One month of CIB treatment significantly increased the cortical (~5.8%) and trabecular (~5.2%) bone mineral density in C57BL/6J WT female mice. Similarly, administration of CIB for five consecutive days to female mice that concurrently received EPO on days one and four, reduced the number of osteoclast progenitors, defined by flow cytometry as Lin−CD11b−Ly6Chi CD115+, by 42.8% compared to treatment with EPO alone. In addition, CIB alone or in combination with EPO inhibited osteoclastogenesis in vitro. Our findings introduce CIB either as a stand-alone treatment, or in combination with EPO, as an appealing candidate for the treatment of the bone loss that accompanies EPO treatment
    Colonic Medium-Chain Fatty Acids Act as a Source of Energy and for Colon Maintenance but Are Not Utilized to Acylate Ghrelin
    András Gregor - 2021
    The capacity of microbiota to produce medium-chain fatty acids (MCFA) and related consequences for the gastrointestinal (GI) tract have never been reported before. We verified the impact of nutrition-related factors on fatty acid (FAs) production and found that caloric restriction decreased levels of most of MCFAs in the mouse cecum, whereas overnight fasting reduced the levels of acetate and butyrate but increased propionate and laurate. A diet high in soluble fibre boosted the production of short-chain fatty acids (SCFA) and caproate whereas a high-cellulose diet did not have an effect or decreased the levels of some of the FAs. Rectal infusion of caprylate resulted in its rapid metabolism for energy production. Repeated 10-day MCFA infusion impacted epididymal white adipose tissue (eWAT) weight and lipid accumulation. Repeated infusion of caprylate rectally tended to increase the concentration of active ghrelin in mice plasma; however, this increase was not statistically significant. In Caco-2 cells, caprylate increased the expression of Fabp2, Pdk4, Tlr3, and Gpr40 genes as well as counteracted TNFα-triggered downregulation of Pparγ, Occludin, and Zonulin mRNA expression. In conclusion, we show that colonic MCFAs can be rapidly utilized as a source of energy or stored as a lipid supply. Further, locally produced caprylate may impact metabolism and inflammatory parameters in the colon.
    Dual role of neutrophils in modulating liver injury and fibrosis during development and resolution of diet-induced murine steatohepatitis
    Andrea D. Kim - 2021
    Inflammatory changes in the liver represent a key feature of non-alcoholic steatohepatitis (NASH), the progressive form of non-alcoholic fatty liver disease (NAFLD). Innate immune activation including hepatic neutrophilic infiltration acts as an important inflammatory trigger as well as a potential mediator of inflammation resolution. In this study, we dissected the effects of neutrophil depletion via anti-lymphocyte antigen 6 complex locus G6D (Ly6G) antibodies administration during ongoing high fat-fructose-cholesterol (FFC) diet-induced murine NASH and during inflammation resolution by switching into a low-fat control diet. During NASH progression, protective effects were shown as HSC activation, cell infiltration and activation of pro-inflammatory macrophages were ameliorated. Furthermore, these changes were contrasted with the effects observed when neutrophil depletion was performed during the resolution phase. Impaired resolving mechanisms, such as a failure to balance the pro and anti-inflammatory cytokines ratio, deficient macrophage phenotypic switch into a pro-restorative profile, and defective repair and remodeling processes were observed when neutrophils were depleted in this scenario. This study described phase-dependent contrasting roles of neutrophils as triggers and pro-resolutive mediators of liver injury and fibrosis associated with diet-induced NASH in mice. These findings have important translational implications at the time of designing NASH therapeutic strategies.
    Human and mouse muscle transcriptomic analyses identify insulin receptor mRNA downregulation in hyperinsulinemia-associated insulin resistance
    Haoning Howard Cen - 2021
    Hyperinsulinemia is commonly viewed as a compensatory response to insulin resistance, yet studies have demonstrated that chronically elevated insulin may also drive insulin resistance. The molecular mechanisms underpinning this potentially cyclic process remain poorly defined, especially on a transcriptome-wide level. Transcriptomic meta-analysis in >450 human samples demonstrated that fasting insulin reliably and negatively correlated with INSR mRNA in skeletal muscle. To establish causality and study the direct effects of prolonged exposure to excess insulin in muscle cells, we incubated C2C12 myotubes with elevated insulin for 16 h, followed by 6 h of serum starvation, and established that acute AKT and ERK signaling were attenuated in this model of in vitro hyperinsulinemia. Global RNA-sequencing of cells both before and after nutrient withdrawal highlighted genes in the insulin receptor (INSR) signaling, FOXO signaling, and glucose metabolism pathways indicative of ‘hyperinsulinemia’ and ‘starvation’ programs. Consistently, we observed that hyperinsulinemia led to a substantial reduction in Insr gene expression, and subsequently a reduced surface INSR and total INSR protein, both in vitro and in vivo. Bioinformatic modeling combined with RNAi identified SIN3A as a negative regulator of Insr mRNA (and JUND, MAX, and MXI as positive regulators of Irs2 mRNA). Together, our analysis identifies mechanisms which may explain the cyclic processes underlying hyperinsulinemia-induced insulin resistance in muscle, a process directly relevant to the etiology and disease progression of type 2 diabetes.
    Anti-Biofilm Activity of Cannabigerol against Streptococcus mutans
    Muna Aqawi - 2021
    Streptococcus mutans is a common cariogenic bacterium in the oral cavity involved in plaque formation. Previous studies showed that Cannabigerol (CBG) has bacteriostatic and bacteriocidic activity against S. mutans. The aim of the present study was to study its effect on S. mutans biofilm formation and dispersion. S. mutans was cultivated in the presence of CBG, and the resulting biofilms were examined by CV staining, MTT assay, qPCR, biofilm tracer, optical profilometry, and SEM. Gene expression was determined by real-time qPCR, extracellular polysaccharide (EPS) production was determined by Congo Red, and reactive oxygen species (ROS) were determined using DCFH-DA. CBG prevented the biofilm formation of S. mutans shown by reduced biofilm biomass, decreased biofilm thickness, less EPS production, reduced DNA content, diminished metabolic activity, and increased ROS levels. CBG altered the biofilm roughness profile, resulting in a smoother biofilm surface. When treating preformed biofilms, CBG reduced the metabolic activity of S. mutans with a transient effect on the biomass. CBG reduced the expression of various genes involved in essential metabolic pathways related to the cariogenic properties of S. mutans biofilms. Our data show that CBG has anti-biofilm activities against S. mutans and might be a potential drug for preventive treatment of dental caries.
    A Novel Spectral Annotation Strategy Streamlines Reporting of mono-ADP-ribosylated Peptides Derived from Mouse Liver and Spleen in Response to IFN-y
    Shiori Kuraoka - 2021
    Mass spectrometry-enabled ADP-ribosylation workflows are developing rapidly, providing researchers a variety of ADP-ribosylome enrichment strategies and mass spectrometric acquisition options. Despite the growth spurt in upstream technologies, systematic ADP-ribosyl (ADPr) peptide mass spectral annotation methods are lacking. HCD-dependent ADP-ribosylome studies are common but the resulting MS2 spectra are complex, owing to a mixture of b/y-ions and the m/p-ion peaks representing one or more dissociation events of the ADPr moiety (m-ion) and peptide (p-ion). In particular, p-ions that dissociate further into one or more fragment ions can dominate HCD spectra but are not recognized by standard spectral annotation workflows. As a result, annotation strategies that are solely reliant upon the b/y-ions result in lower spectral scores that in turn reduce the number of reportable ADPr peptides. To improve the confidence of spectral assignments we implemented an ADPr peptide annotation and scoring strategy. All MS2 spectra are scored for the ADPr m-ions, but once spectra are assigned as an ADPr peptide they are further annotated and scored for the p-ions. We implemented this novel workflow to ADPr peptides enriched from the liver and spleen isolated from mice post 4-hour exposure to systemic IFN-. HCD collision energy experiments were first performed on the Orbitrap Fusion Lumos and the Q Exactive, with notable ADPr peptide dissociation properties verified with CID (Lumos). The m-ion and p-ion series score distributions revealed that ADPr peptide dissociation properties vary markedly between instruments and within instrument collision energy settings, with consequences on ADPr peptide reporting and amino acid localization. Consequentially, we increased the number of reportable ADPr peptides by 25% (liver) and 17% (spleen) by validation and the inclusion of lower confidence ADPr peptide spectra. This systematic annotation strategy will streamline future reporting of ADPr peptides that have been sequenced using any HCD/CID-based method.
    Nuclear Organization during Hepatogenesis in Zebrafish Requires Uhrf1
    Bhavani P. Madakashira - 2021
    Acquisition of cellular fate during development is initiated and maintained by well-coordinated patterns of gene expression that are dictated by the epigenetic landscape and genome organization in the nucleus. While the epigenetic marks that mediate developmental gene expression patterns during organogenesis have been well studied, less is known about how epigenetic marks influence nuclear organization during development. This study examines the relationship between nuclear structure, chromatin accessibility, DNA methylation, and gene expression during hepatic outgrowth in zebrafish larvae. We investigate the relationship between these features using mutants that lack DNA methylation. Hepatocyte nuclear morphology was established coincident with hepatocyte differentiation at 80 h post-fertilization (hpf), and nuclear shape and size continued to change until the conclusion of outgrowth and morphogenesis at 120 hpf. Integrating ATAC-Seq analysis with DNA methylation profiling of zebrafish livers at 120 hpf showed that closed and highly methylated chromatin occupies most transposable elements and that open chromatin correlated with gene expression. DNA hypomethylation, due to mutation of genes encoding ubiquitin-like, containing PHD and RING Finger Domains 1 (uhrf1) and DNA methyltransferase (dnmt1), did not block hepatocyte differentiation, but had dramatic effects on nuclear organization. Hepatocytes in uhrf1 mutants have large, deformed nuclei with multiple nucleoli, downregulation of nucleolar genes, and a complete lack of the nuclear lamina. Loss of lamin B2 staining was phenocopied by dnmt1 mutation. Together, these data show that hepatocyte nuclear morphogenesis coincides with organ morphogenesis and outgrowth, and that DNA methylation directs chromatin organization, and, in turn, hepatocyte nuclear shape and size during liver development.
    Food Chemistry: Molecular Sciences 3 (2021) 100034Available online 13 July 20212666-5662/© 2021 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license ( effects of p
    Oren Hadaya - 2021
    We assessed the potential of Pistacia lentiscus (lentisk) phenolic compounds to enhance production of milk composition in lactating goats and caprine primary mammary epithelial cells (MEC). Damascus goats were given a lentisk infusion (LI) or fresh water (FW) to drink, in a crossover design. Milk from LI vs. FW goats was 0.43% richer in fat and 30% in omega 3 fatty acids. Lentisk infusion enhanced antioxidant capacity of plasma and milk by 37% and 30% respectively, and induced transcriptional activation of antioxidant genes. To assess the direct effect of polyphenols on milk quality in terms of composition and antioxidant capacity, we used plasma collected from goats fed hay (HP) or browsed on phenolic compounds-rich pasture (primarily lentisk; PP) as a conditioning medium for primary culture of MEC. PP increased 2-fold cellular triglyceride content and 2.4-fold intracellular casein, and increased ATP production and non-mitochondrial oxygen consumption. Taken together, the results imply that lentisk phenolic compounds affect blood, MEC and milk oxidative status, which increase fat pro-duction by the mammary gland.
    Time-restricted feeding normalizes hyperinsulinemia to inhibit breast cancer in obese postmenopausal mouse models
    Manasi Das - 2021
    Accumulating evidence indicates that obesity with its associated metabolic dysregulation, including hyperinsulinemia and aberrant circadian rhythms, increases the risk for a variety of cancers including postmenopausal breast cancer. Caloric restriction can ameliorate the harmful metabolic effects of obesity and inhibit cancer progression but is difficult to implement and maintain outside of the clinic. In this study, we aim to test a time-restricted feeding (TRF) approach on mouse models of obesity-driven postmenopausal breast cancer. We show that TRF abrogates the obesity-enhanced mammary tumor growth in two orthotopic models in the absence of calorie restriction or weight loss. TRF also reduces breast cancer metastasis to the lung. Furthermore, TRF delays tumor initiation in a transgenic model of mammary tumorigenesis prior to the onset of obesity. Notably, TRF increases whole-body insulin sensitivity, reduces hyperinsulinemia, restores diurnal gene expression rhythms in the tumor, and attenuates tumor growth and insulin signaling. Importantly, inhibition of insulin secretion with diazoxide mimics TRF whereas artificial elevation of insulin through insulin pumps implantation reverses the effect of TRF, suggesting that TRF acts through modulating hyperinsulinemia. Our data suggest that TRF is likely to be effective in breast cancer prevention and therapy.
    The Expression Levels and Cellular Localization of Pigment Epithelium Derived Factor (PEDF) in Mouse Testis: Its Possible Involvement in the Differentiation of Spermatogonial Cells
    Noy Bagdadi - 2021
    Pigment epithelium derived factor (PEDF) is a multifunctional secretory soluble glycoprotein that belongs to the serine protease inhibitor (serpin) family. It was reported to have neurotrophic, anti-angiogenic and anti-tumorigenic activity. Recently, PEDF was found in testicular peritubular cells and it was assumed to be involved in the avascular nature of seminiferous tubules. The aim of this study was to determine the cellular origin, expression levels and target cells of PEDF in testicular tissue of immature and adult mice under physiological conditions, and to explore its possible role in the process of spermatogenesis in vitro. Using immunofluorescence staining, we showed that PEDF was localized in spermatogenic cells at different stages of development as well as in the somatic cells of the testis. Its protein levels in testicular homogenates and Sertoli cells supernatant showed a significant decrease with age. PEDF receptor (PEDF-R) was localized within the seminiferous tubule cells and in the interstitial cells compartment. Its RNA expression levels showed an increase with age until 8 weeks followed by a decrease. RNA levels of PEDF-R showed the opposite trend of the protein. Addition of PEDF to cultures of isolated cells from the seminiferous tubules did not changed their proliferation rate, however, a significant increase was observed in number of meiotic/post meiotic cells at 1000 ng/mL of PEDF; indicating an in vitro differentiation effect. This study may suggest a role for PEDF in the process of spermatogenesis.
    Heterogeneity in PHGDH protein expression potentiates cancer cell dissemination and metastasis
    Matteo Rossi - 2021
    Cancer metastasis requires the transient activation of cellular programs enabling dissemination and seeding in distant organs. Genetic, transcriptional and translational intra-tumor heterogeneity contributes to this dynamic process. Beyond this, metabolic intra-tumor heterogeneity has also been observed, yet its role for cancer progression remains largely elusive. Here, we discovered that intra-tumor heterogeneity in phosphoglycerate dehydrogenase (PHGDH) protein expression drives breast cancer cell dissemination and metastasis formation. Specifically, we observed intra-tumor heterogeneous PHGDH expression in primary breast tumors, with low PHGDH expression being indicative of metastasis in patients. In mice, Phgdh protein, but not mRNA, expression is low in circulating tumor cells and early metastatic lesions, leading to increased dissemination and metastasis formation. Mechanistically, low PHGDH protein expression induces an imbalance in glycolysis that can activate sialic acid synthesis. Consequently, cancer cells undergo a partial EMT and show increased p38 as well as SRC phosphorylation, which activate cellular programs of dissemination. In turn, inhibition of sialic acid synthesis through knock-out of cytidine monophosphate N-acetylneuraminic acid synthetase (CMAS) counteracts the increased cancer cell dissemination and metastasis induced by low PHGDH expression. In conclusion, we find that heterogeneity in PHGDH protein expression promotes cancer cell dissemination and metastasis formation
    Evaluation of PC12 Cell Neural Differentiation on Graphene Coated ITO Microchips
    Tansu Golcez - 2020
    In this study, the impact of graphene on neuronal differentiation of PC12 cells into neuron-like cells was evaluated in conjunction with electrical stimuli. First, an ITO (Indium Tin Oxide) microchip with a certain number of electrodes was fabricated using photolithography and then a chemically synthesized graphene was coated on the microchip. The electrical stimulation was applied through the ITO-microchip. Following optimization of neuronal differentiation conditions, the effect of AC and DC electrical stimulation on both bare and graphenecoated ITO-microchips for neuronal differentiation was investigated. According to the results, it was observed that electrical stimulation with direct current for 30 minutes caused a large degree of neuronal cell differentiation on the graphene coated ITO-microchips. The results were also verified by real-time qPCR.
    Transition between canonical to non-canonical Wnt signaling during interactions between mesenchymal stem cells and osteosarcomas
    Masha Asulin - 2020
    Background: Wnt signaling pathways are taking a part in regulation of cell fate decisions in normal and cancerous cells. In some cancer types, a transition from canonical to non-canonical Wnt signaling pathways was identifi ed, a phenomenon, that in return led to increase proliferation, invasiveness and metastasis. Methods: In the current in vitro study we investigated the infl uence of MSCs, co-cultured in direct and indirect contact with OS cells, on the role of Wnt signaling pathways and tumor aggressiveness. Sub-populations were separated using Boyden chambers. Gene expression profi les were determined by qPCR. Results: The results revealed that interactions with MSCs increased migration and invasion capacities along with OS proliferation. Moreover, canonical Wnt signaling activity was low in OS, and co-culture with MSC. However, MSCs did not trigger a switch between the canonical to the no-canonical Wnt pathways. In addition, a more aggressive OS sub-population tend to undergo a transition towards the non-canonical pathway. Moreover, this aggressive subtype presented cancer stem-cells like characteristic. Conclusions: We submit that the progression in OS aggressiveness is attributed to a transition in Wnt signaling from canonical to non-canonical pathways, although MSCs are likely to take a part during the tumor progression, in the case of OS, they did not affect the Wnt switch. These complex tumor promoting interactions may be found in the natural and tumorigenic bone microenvironment. A better understanding of the molecular signaling mechanisms involved in the tumor development and metastasis may contribute to development of new cancer therapies.
    Choroid plexus LAT2 and SNAT3 as partners in CSF amino acid homeostasis maintenance
    Elena Dolgodilina - 2020
    Background Cerebrospinal fluid (CSF) is mainly produced by the choroid plexus (CP) located in brain ventricles. Although derived from blood plasma, it is nearly protein-free (~ 250-fold less) and contains about 2–20-fold less free amino acids, with the exception of glutamine (Gln) which is nearly equal. The aim of this study was to determine which amino acid transporters are expressed in mouse CP epithelium in order to gain understanding about how this barrier maintains the observed amino acid concentration gradient. Methods Expression of amino acid transporters was assessed in isolated choroid plexuses (CPs) by qRT-PCR followed by localization studies using immunofluorescence with specific antibodies. The impact of LAT2 (Slc7a8) antiporter deletion on CSF amino acids was determined. Results The purity of isolated choroid plexuses was tested on the mRNA level using specific markers, in particular transthyretin (Ttr) that was enriched 330-fold in CP compared to cerebral tissue. In a first experimental round, 14 out of 32 Slc amino acid transporters tested on the mRNA level by qPCR were selected for further investigation. Out of these, five were considered highly expressed, SNAT1 (Slc38a1), SNAT3 (Slc38a3), LAT2 (Slc7a8), ASC1 (Slc7a10) and SIT1 (Slc6a20b). Three of them were visualized by immunofluorescence: SNAT1 (Slc38a1), a neutral amino acid-Na+ symporter, found at the blood side basolateral membrane of CP epithelium, while SNAT3 (Slc38a3), an amino acid-Na+ symporter and H+ antiporter, as well as LAT2 (Slc7a8), a neutral amino acid antiporter, were localized at the CSF-facing luminal membrane. In a LAT2 knock-out mouse model, CSF Gln was unchanged, whereas other amino acids normally 2–20-fold lower than in plasma, were increased, in particular the LAT2 uptake substrates leucine (Leu), valine (Val) and tryptophan (Trp) and some other amino acids such as glutamate (Glu), glycine (Gly) and proline (Pro). Conclusion These results suggest that Gln is actively transported by SNAT1 from the blood into CP epithelial cells and then released luminally into CSF via SNAT3 and LAT2. Its efflux via LAT2 may drive the reuptake from the CSF of essential amino acid substrates of this antiporter and thereby participates to maintaining the amino acid gradient between plasma and CSF.
    Conserved statin-mediated activation of the p38-MAPK pathway protects Caenorhabditis elegans from the cholesterol-independent effects of statins
    Irina Langier Goncalves - 2020
    Objective Statins are a group of medications that reduce cholesterol synthesis by inhibiting the activity of HMG-CoA reductase, a key enzyme in the mevalonate pathway. The clinical use of statins to lower excess cholesterol levels has revolutionized the cardiovascular field and increased the survival of millions, but some patients have adverse side effects. A growing body of data suggests that some of the beneficial and adverse effects of statins, including their anti-inflammatory, anti-tumorigenic, and myopathic activities, are cholesterol-independent. However, the underlying mechanisms for these effects of statins are not well defined. Methods Because Caenorhabditis elegans (C. elegans) lacks the cholesterol synthesis branch of the mevalonate pathway, this organism is a powerful system to unveil the cholesterol-independent effects of statins. We used genetic and biochemical approaches in C. elegans and cultured macrophage-derived murine cells to study the cellular response to statins. Results We found that statins activate a conserved p38-MAPK (p38) cascade and that the protein geranylgeranylation branch of the mevalonate pathway links the effect of statins to the activation of this p38 pathway. We propose that the blockade of geranylgeranylation impairs the function of specific small GTPases we identified as upstream regulators of the p38 pathway. Statin-mediated p38 activation in C. elegans results in the regulation of programs of innate immunity, stress, and metabolism. In agreement with this regulation, knockout of the p38 pathway results in the hypersensitivity of C. elegans to statins. Treating cultured mammalian cells with clinical doses of statins results in the activation of the same p38 pathway, which upregulates the COX-2 protein, a major regulator of innate immunity in mammals. Conclusions Statins activate an evolutionarily conserved p38 pathway to regulate metabolism and innate immunity. Our results highlight the cytoprotective role of p38 activation under statin treatment in vivo and propose that this activation underlies many of the critical cholesterol-independent effects of statins.
    Introduction of a green algal squalene synthase enhances squalene accumulation in a strain of Synechocystis sp. PCC 6803
    Bagmi Pattanaik - 2020
    Squalene is a triterpene which is produced as a precursor for a wide range of terpenoid compounds in many organisms. It has commercial use in food and cosmetics but could also be used as a feedstock for production of chemicals and fuels, if generated sustainably on a large scale. We have engineered a cyanobacterium, Synechocystis sp. PCC 6803, for production of squalene from CO2. In this organism, squalene is produced via the methylerythritol-phosphate (MEP) pathway for terpenoid biosynthesis, and consumed by the enzyme squalene hopene cyclase (Shc) for generation of hopanoids. The gene encoding Shc in Synechocystis was inactivated (Δshc) by insertion of a gene encoding a squalene synthase from the green alga Botryococcus braunii, under control of an inducible promoter. We could demonstrate elevated squalene generation in cells where the algal enzyme was induced. Heterologous overexpression of genes upstream in the MEP pathway further enhanced the production of squalene, to a level three times higher than the Δshc background strain. During growth in flat panel bioreactors, a squalene titer of 5.1 ​mg/L of culture was reached.
    Blimp-1 is essential for allergen-induced asthma and Th2 cell development in the lung
    Kun He - 2020
    A Th2 immune response is central to allergic airway inflammation, which afflicts millions worldwide. However, the mechanisms that augment GATA3 expression in an antigen-primed developing Th2 cell are not well understood. Here, we describe an unexpected role for Blimp-1, a transcriptional repressor that constrains autoimmunity, as an upstream promoter of GATA3 expression that is critical for Th2 cell development in the lung to inhaled but not systemically delivered allergens but is dispensable for TFH function and IgE production. Mechanistically, Blimp-1 acts through Bcl6, leading to increased GATA3 expression in lung Th2 cells. Surprisingly, the anti-inflammatory cytokine IL-10, but not the pro-inflammatory cytokines IL-6 or IL-21, is required via STAT3 activation to up-regulate Blimp-1 and promote Th2 cell development. These data reveal a hitherto unappreciated role for an IL-10–STAT3–Blimp-1 circuit as an initiator of an inflammatory Th2 response in the lung to allergens. Thus, Blimp-1 in a context-dependent fashion can drive inflammation by promoting rather than terminating effector T cell responses.
    Molecular Mechanisms Underlying the Absorption of Aglycone and Glycosidic Flavonoids in a Caco-2 BBe1 Cell Model
    Hua Zhang - 2020
    The mechanisms of cellular absorption and transport underlying the differences between flavonoid aglycones and glycosides and the effect of the structural feature are not well established. In this study, aglycone, mono-, and diglycosides of quercetin and cyanidin were selected to examine the effects of the structural feature on the bioavailability of flavonoids using hexose transporters SGLT1 and GLUT2 in a Caco-2 BBe1 cell model. Cellular uptake and transport of all glycosides were significantly different. The glycosides also significantly inhibited cellular uptake of d-glucose, indicating the involvement of the two hexose transporters SGLT1 and GLUT2 in the absorption, and the potential of the glycosides in lowering the blood glucose level. The in silico prediction model also supported these observations. The absorption of glycosides, especially diglycosides but not the aglycones, was significantly blocked by SGLT1 and GLUT2 inhibitors (phloridzin and phloretin) and further validated in SGLT1 knockdown Caco-2 BBe1 cells.
    Extrahepatic cholangiocyte obstruction is mediated by decreased glutathione, Wnt and Notch signaling pathways in a toxic model of biliary atresia
    Sophia Fried - 2020
    Biliary atresia is a neonatal liver disease with extrahepatic bile duct obstruction and progressive liver fibrosis. The etiology and pathogenesis of the disease are unknown. We previously identified a plant toxin, biliatresone, responsible for biliary atresia in naturally-occurring animal models, that causes cholangiocyte destruction in in-vitro models. Decreases in reduced glutathione (GSH) mimic the effects of biliatresone, and agents that replenish cellular GSH ameliorate the effects of the toxin. The goals of this study were to define signaling pathways downstream of biliatresone that lead to cholangiocyte destruction and to determine their relationship to GSH. Using cholangiocyte culture and 3D cholangiocyte spheroid cultures, we found that biliatresone and decreases in GSH upregulated RhoU/Wrch1, a Wnt signaling family member, which then mediated an increase in Hey2 in the NOTCH signaling pathway, causing downregulation of the transcription factor Sox17. When these genes were up- or down-regulated, the biliatresone effect on spheroids was phenocopied, resulting in lumen obstruction. Biopsies of patients with biliary atresia demonstrated increased RhoU/Wrch1 and Hey2 expression in cholangiocytes. We present a novel pathway of cholangiocyte injury in a model of biliary atresia, which is relevant to human BA and may suggest potential future therapeutics.
    Expanding the search for genetic biomarkers of Parkinson's disease into the living brain
    Simon M. Benoit - 2020
    Altered gene expression related to Parkinson's Disease (PD) has not been described in the living brain, yet this information may support novel discovery pertinent to disease pathophysiology and treatment. This study compared the transcriptome in brain biopsies obtained from living PD and Control patients. To evaluate the novelty of this data, a comprehensive literature review also compared differentially expressed gene (DEGs) identified in the current study with those reported in PD cadaveric brain and peripheral tissues. RNA was extracted from rapidly cryopreserved frontal lobe specimens collected from PD and Control patients undergoing neurosurgical procedures. RNA sequencing (RNA-Seq) was performed and validated using quantitative polymerase chain reaction. DEG data was assessed using bioinformatics and subsequently included within a comparative analysis of PD RNA-Seq studies. 370 DEGs identified in living brain specimens reflected diverse gene groups and included key members of trophic signaling, apoptosis, inflammation and cell metabolism pathways. The comprehensive literature review yielded 7 RNA-Seq datasets generated from blood, skin and cadaveric brain but none from a living brain source. From the current dataset, 123 DEGs were identified only within the living brain and 267 DEGs were either newly found or had distinct directional change in living brain relative to other tissues. This is the first known study to analyze the transcriptome in brain tissue from living PD and Control patients. The data produced using these methods offer a unique, unexplored resource with potential to advance insight into the genetic associations of PD.
    Embryonic development and secondary axis induction in the Brazilian white knee tarantula Acanthoscurria geniculata, C. L. Koch, 1841 (Araneae; Mygalomorphae; Theraphosidae)
    Matthias Pechmann - 2020
    Tarantulas represent some of the heaviest and most famous spiders. However, there is little information about the embryonic development of these spiders or their relatives (infraorder Mygalomorphae) and time-lapse recording of the embryonic development is entirely missing. I here describe the complete development of the Brazilian white knee tarantula, Acanthoscurria geniculata, in fixed and live embryos. The establishment of the blastoderm, the formation, migration and signalling of the cumulus and the shape changes that occur in the segment addition zone are analysed in detail. In addition, I show that there might be differences in the contraction process of early embryos of different theraphosid spider species. A new embryonic reference transcriptome was generated for this study and was used to clone and analyse the expression of several important developmental genes. Finally, I show that embryos of A. geniculata are amenable to tissue transplantation and bead insertion experiments. Using these functional approaches, I induced axis duplication in embryos via cumulus transplantation and ectopic activation of BMP signalling. Overall, the mygalomorph spider A. geniculata is a useful laboratory system to analyse evolutionary developmental questions, and the availability of such a system will help understanding conserved and divergent aspects of spider/chelicerate development.
    Improving synthetic methylotrophy via dynamic formaldehyde regulation of pentose phosphate pathway genes and redox perturbation
    Julia Rohlhill - 2020
    Escherichia coli is an ideal choice for constructing synthetic methylotrophs capable of utilizing the non-native substrate methanol as a carbon and energy source. All current E. coli-based synthetic methylotrophs require co-substrates. They display variable levels of methanol-carbon incorporation due to a lack of native regulatory control of biosynthetic pathways, as E. coli does not recognize methanol as a proper substrate despite its ability to catabolize it. Here, using the E. coli formaldehyde-inducible promoter Pfrm, we implement dynamic expression control of select pentose-phosphate genes in response to the formaldehyde produced upon methanol oxidation. Genes under Pfrm control exhibited 8- to 30-fold transcriptional upregulation during growth on methanol. Formaldehyde-induced episomal expression of the B. methanolicus rpe and tkt genes involved in the regeneration of ribulose 5-phosphate required for formaldehyde fixation led to significantly improved methanol assimilation into intracellular metabolites, including a 2-fold increase of 13C-methanol into glutamate. Using a simple strategy for redox perturbation by deleting the E. coli NAD-dependent malate dehydrogenase gene maldh, we demonstrate 5-fold improved biomass formation of cells growing on methanol in the presence of a small concentration of yeast extract. Further improvements in methanol utilization are achieved via adaptive laboratory evolution and heterologous rpe and tkt expression. A short-term in vivo 13C-methanol labeling assay was used to determine methanol assimilation activity for Δmaldh strains, and demonstrated dramatically higher labeling in intracellular metabolites, including a 6-fold and 1.8-fold increase in glycine labeling for the rpe/tkt and evolved strains, respectively. The combination of formaldehyde-controlled pentose phosphate pathway expression and redox perturbation with the maldh knock-out greatly improved both growth benefit with methanol and methanol carbon incorporation into intracellular metabolites.
    Catestatin improves insulin sensitivity by attenuating endoplasmic reticulum stress: In vivo and in silico validation
    Abhijit Dasgupta - 2020
    Obesity is characterized by a state of chronic, unresolved inflammation in insulin-targeted tissues. Obesity-induced inflammation causes accumulation of proinflammatory macrophages in adipose tissue and liver. Proinflammatory cytokines released from tissue macrophages inhibits insulin sensitivity. Obesity also leads to inflammation-induced endoplasmic reticulum (ER) stress and insulin resistance. In this scenario, based on the data (specifically patterns) generated by our in vivo experiments on both diet-induced obese (DIO) and normal chow diet (NCD) mice, we developed an in silico state space model to integrate ER stress and insulin signaling pathways. Computational results successfully followed the experimental results for both DIO and NCD conditions. Chromogranin A (CgA) peptide catestatin (CST: hCgA352−372) improves obesity-induced hepatic insulin resistance by reducing inflammation and inhibiting proinflammatory macrophage infiltration. We reasoned that the anti-inflammatory effects of CST would alleviate ER stress. CST decreased obesity-induced ER dilation in hepatocytes and macrophages. On application of Proportional-Integral-Derivative (PID) controllers on the in silico model, we checked whether the reduction of phosphorylated PERK resulting in attenuation of ER stress, resembling CST effect, could enhance insulin sensitivity. The simulation results clearly pointed out that CST not only decreased ER stress but also enhanced insulin sensitivity in mammalian cells. In vivo experiment validated the simulation results by depicting that CST caused decrease in phosphorylation of UPR signaling molecules and increased phosphorylation of insulin signaling molecules. Besides simulation results predicted that enhancement of AKT phosphorylation helps in both overcoming ER stress and achieving insulin sensitivity. These effects of CST were verified in hepatocyte culture model.
    Acute Synovitis after Trauma Precedes and is Associated with Osteoarthritis Onset and Progression
    Lifan Liao - 2020
    Osteoarthritis (OA) is a whole-joint disease characterized by cartilage destruction, subchondral bone sclerosis, osteophyte formation, and synovitis. However, it remains unclear which part of the joint undergoes initial pathological changes that drives OA onset and progression. In the present study, we investigated the longitudinal alterations of the entire knee joint using a surgically-induced OA mouse model. Histology analysis showed that synovitis occurred as early as 1 week after destabilization of the medial meniscus (DMM), which preceded the events of cartilage degradation, subchondral sclerosis and osteophyte formation. Importantly, key pro-inflammatory cytokines such as IL-1β, IL-6, TNFα, and Ccl2, major matrix degrading enzymes including Adamts4, Mmp3 and Mmp13, as well as nerve growth factor (NGF), all increased significantly in both synovium and articular cartilage. It is notable that the inductions of these factors in synovium are far more extensive than those in articular cartilage. Results from behavioral tests demonstrated that sensitization of knee joint pain developed after 8 weeks, later than histological and molecular changes. In addition, the nanoindentation modulus of the medial tibiae decreased 4 weeks after DMM surgery, simultaneous with histological OA signs, which is also later than appearance of synovitis. Collectively, our data suggested that synovitis precedes and is associated with OA, and thus synovium may be an important target to intervene in OA treatment.
    The Δ133p53β isoform promotes an immunosuppressive environment leading to aggressive prostate cancer
    Marina Kazantseva - 2019
    Prostate cancer is the second most common cancer in men, for which there are no reliable biomarkers or targeted therapies. Here we demonstrate that elevated levels of Δ133TP53β isoform characterize prostate cancers with immune cell infiltration, particularly T cells and CD163+ macrophages. These cancers are associated with shorter progression-free survival, Gleason scores ≥ 7, and an immunosuppressive environment defined by a higher proportion of PD-1, PD-L1 and colony-stimulating factor 1 receptor (CSF1R) positive cells. Consistent with this, RNA-seq of tumours showed enrichment for pathways associated with immune signalling and cell migration. We further show a role for hypoxia and wild-type p53 in upregulating Δ133TP53 levels. Finally, AUC analysis showed that Δ133TP53β expression level alone predicted aggressive disease with 88% accuracy. Our data identify Δ133TP53β as a highly accurate prognostic factor for aggressive prostate cancer.
    Targeted exon skipping with AAV-mediated split adenine base editors
    Jackson Winter - 2019
    Techniques for exclusion of exons from mature transcripts have been applied as gene therapies for treating many different diseases. Since exon skipping has been traditionally accomplished using technologies that have a transient effect, it is particularly important to develop new techniques that enable permanent exon skipping. We have recently shown that this can be accomplished using cytidine base editors for permanently disabling the splice acceptor of target exons. We now demonstrate the application of CRISPR-Cas9 adenine deaminase base editors to disrupt the conserved adenine within splice acceptor sites for programmable exon skipping. We also demonstrate that by altering the amino acid sequence of the linker between the adenosine deaminase domain and the Cas9-nickase or by coupling the adenine base editor with a uracil glycosylase inhibitor, the DNA editing efficiency and exon-skipping rates improve significantly. Finally, we developed a split base editor architecture compatible with adeno-associated viral packaging. Collectively, these results represent significant progress toward permanent in vivo exon skipping through base editing and, ultimately, a new modality of gene therapy for the treatment of genetic diseases.
    Retinoids induce antagonism between FOXO3A and FOXM1 transcription factors in human oral squamous cell carcinoma (OSCC) cells
    Kwame Osei-Sarfo - 2019
    To gain a greater understanding of oral squamous cell carcinoma (OSCC) we investigated the actions of all-trans-retinoic acid (RA; a retinoid), bexarotene (a pan-RXR agonist), and forkhead box (FOX) transcription factors in human OSCC-derived cell lines. RA and bexarotene have been shown to limit several oncogenic pathways in many cell types. FOXO proteins typically are associated with tumor suppressive activities, whereas FOXM1 acts as an oncogene when overexpressed in several cancers. RA and/or bexarotene increased the transcript levels of FOXO1, FOXO3A, and TRAIL receptors; reduced the transcript levels of FOXM1, Aurora kinase B (AURKB), and vascular endothelial growth factor A (VEGFA); and decreased the proliferation of OSCC-derived cell lines. Also, RA and/or bexarotene influenced the recruitment of FOXO3A and FOXM1 to target genes. Additionally, FOXM1 depletion reduced cell proliferation, decreased transcript levels of downstream targets of FOXM1, and increased transcript levels of TRAIL receptors. Overexpression of FOXO3A decreased proliferation and increased binding of histone deacetylases (HDACs) 1 and 2 at the FOXM1, AURKB, and VEGFA promoters. This research suggests novel influences of the drugs RA and bexarotene on the expression of FOXM1 and FOXO3A in transcriptional regulatory pathways of human OSCC.
    Defining fallopian tube‐derived miRNA cancer signatures
    Selam B. Dejene - 2019
    Background MicroRNAs have recently emerged as promising circulating biomarkers in diverse cancer types, including ovarian cancer. We utilized conditional, doxycycline‐induced fallopian tube (FT)‐derived cancer models to identify changes in miRNA expression in tumors and plasma, and further validated the murine findings in high‐grade ovarian cancer patient samples. Methods We analyzed 566 biologically informative miRNAs in doxycycline‐induced FT and metastatic tumors as well as plasma samples derived from murine models bearing inactivation of Brca, Tp53, and Pten genes. We identified miRNAs that showed a consistent pattern of dysregulated expression and validated our results in human patient serum samples. Results We identified six miRNAs that were significantly dysregulated in doxycycline‐induced FTs (P < .05) and 130 miRNAs differentially regulated in metastases compared to normal fallopian tissues (P < .05). Furthermore, we validated miR‐21a‐5p, miR‐146a‐5p, and miR‐126a‐3p as dysregulated in both murine doxycycline‐induced FT and metastatic tumors, as well as in murine plasma and patient serum samples. Conclusions In summary, we identified changes in miRNA expression that potentially accompany tumor development in murine models driven by commonly found genetic alterations in cancer patients. Further studies are required to test both the function of these miRNAs in driving the disease and their utility as potential biomarkers for diagnosis and/or disease progression.
    Redox-regulation and life-history trade-offs: scavenging mitochondrial ROS improves growth in a wild bird
    Alberto Velando - 2019
    It has been proposed that animals usually restrain their growth because fast growth leads to an increased production of mitochondrial reactive oxygen species (mtROS), which can damage mitochondrial DNA and promote mitochondrial dysfunction. Here, we explicitly test whether this occurs in a wild bird by supplementing chicks with a mitochondria-targeted ROS scavenger, mitoubiquinone (mitoQ), and examining growth rates and mtDNA damage. In the yellow-legged gull Larus michahellis, mitoQ supplementation increased the early growth rate of chicks but did not reduce mtDNA damage. The level of mtDNA damage was negatively correlated with chick mass, but this relationship was not affected by the mitoQ treatment. We also found that chick growth was positively correlated with both mtDNA copy number and the mitochondrial enzymatic activity of citrate synthase, suggesting a link between mitochondrial content and growth. Additionally, we found that MitoQ supplementation increased mitochondrial content (in males), altered the relationship between mtDNA copy number and damage, and downregulated some transcriptional pathways related to cell rejuvenation, suggesting that scavenging mtROS during development enhanced growth rates but at the expense of cellular turnover. Our study confirms the central role of mitochondria modulating life-history trade-offs during development by other mechanisms than mtROS-inflicted damage.
    Selective inhibition of N-linked glycosylation impairs receptor tyrosine kinase processing
    Elsenoor Klaver - 2019
    Global inhibition of N-linked glycosylation broadly reduces glycan occupancy on glycoproteins, but identifying how this inhibition functionally impacts specific glycoproteins is challenging. This limits our understanding of pathogenesis in the congenital disorders of glycosylation (CDG). We used selective exo-enzymatic labeling of cells deficient in the two catalytic subunits of oligosaccharyltransferase – STT3A and STT3B – to monitor the presence and glycosylation status of cell surface glycoproteins. We show reduced abundance of two canonical tyrosine receptor kinases – the insulin receptor and insulinlike growth factor 1 receptor (IGF-1R) – at the cell surface in STT3A-null cells, due to decreased N-linked glycan site occupancy and proteolytic processing in combination with increased endoplasmic reticulum localization. Providing cDNA for Golgi-resident proprotein convertase subtilisin/kexin type 5a (PCSK5a) and furin cDNA to wild-type and mutant cells produced under-glycosylated forms of PCSK5a, but not furin, in cells lacking STT3A. Reduced glycosylation of PCSK5a in STT3A-null cells or cells treated with the oligosaccharyltransferase inhibitor NGI-1 corresponded with failure to rescue receptor processing, implying that alterations in the glycosylation of this convertase have functional consequences. Collectively, our findings show that STT3A-dependent inhibition of N-linked glycosylation on receptor tyrosine kinases and their convertases combines to impair receptor processing and surface localization. These results provide new insight into CDG pathogenesis and highlight how the surface abundance of some glycoproteins can be dually impacted by abnormal glycosylation.
    Mast Cell-Specific Expression of Human Siglec-8 in Conditional Knock-in Mice
    Yadong Wei - 2019
    Sialic acid-binding Ig-like lectin 8 (Siglec-8) is expressed on the surface of human eosinophils, mast cells, and basophils—cells that participate in allergic and other diseases. Ligation of Siglec-8 by specific glycan ligands or antibodies triggers eosinophil death and inhibits mast cell degranulation; consequences that could be leveraged as treatment. However, Siglec-8 is not expressed in murine and most other species, thus limiting preclinical studies in vivo. Based on a ROSA26 knock-in vector, a construct was generated that contains the CAG promoter, a LoxP-floxed-Neo-STOP fragment, and full-length Siglec-8 cDNA. Through homologous recombination, this Siglec-8 construct was targeted into the mouse genome of C57BL/6 embryonic stem (ES) cells, and chimeric mice carrying the ROSA26-Siglec-8 gene were generated. After cross-breeding to mast cell-selective Cre-recombinase transgenic lines (CPA3-Cre, and Mcpt5-Cre), the expression of Siglec-8 in different cell types was determined by RT-PCR and flow cytometry. Peritoneal mast cells (dual FcεRI+ and c-Kit+) showed the strongest levels of surface Siglec-8 expression by multicolor flow cytometry compared to expression levels on tissue-derived mast cells. Siglec-8 was seen on a small percentage of peritoneal basophils, but not other leukocytes from CPA3-Siglec-8 mice. Siglec-8 mRNA and surface protein were also detected on bone marrow-derived mast cells. Transgenic expression of Siglec-8 in mice did not affect endogenous numbers of mast cells when quantified from multiple tissues. Thus, we generated two novel mouse strains, in which human Siglec-8 is selectively expressed on mast cells. These mice may enable the study of Siglec-8 biology in mast cells and its therapeutic targeting in vivo.
    Propionic fermentation by the probiotic Propionibacterium freudenreichii to functionalize whey
    Song Huang - 2019
    A new probiotic functionalized sweet whey was evaluated. Weaned healthy piglets consumed sweet whey (SW), unmodified or fermented by P. freudenreichii CIRM-BIA 129 (PF-SW). Fecal short chain fatty acids amounts remained unchanged. Bifidobacteria were enhanced in the PF-SW group, and so was the expression of T-bet, which orchestrates Th1 differentiation of T lymphocytes, in mesenteric lymph nodes immune cells (MLNC). This was consistent with ex vivo increased TNF-α secretion by MLNC in response to lipopolysaccharide (LPS). The consumption of the functionalized whey induced a different response in peripheral blood mononuclear cells (PBMC) to ex vivo stimulations, as the inhibition of TNF-α secretion in response to concanavalin A stimulation. Thus, by cultivating a probiotic GRAS bacterium in concentrated whey, prior to spray drying, it is possible to transform this by-product into a functional ingredient. This opens new avenues for the development of functional ingredients through enhanced valorisation of whey.
    Tissue-specific decellularized endometrial substratum mimicking different physiological conditions influences in vitro embryo development in a rabbit model
    Hannes Campo - 2019
    In the last decades, the decellularization (DC) of organs has become an established technique in the fieldof regenerative medicine to yield complex and vascularized bioscaffolds. Furthermore, it has beendemonstratedin vitrothat these decellularized scaffolds retain their native tissue-specificity. This is alsothe case when this tissue-specific extracellular matrix (ECM) is solubilized and used as hydrogels or coat-ings to create a biomimetic environment. In this study we investigated if this specificity not only remainswhen applied to distinct tissues but even more, that these differences can be distinguished within thesame tissue at different stages of proliferation. To address this question, a sensitivein vitroanimal modelwas used: rabbit embryos at the third day of development were cultured on coatings made from acellularendometrium that was non-proliferating (non-synchronous, NS) and proliferating (synchronous with theembryo, S) and their development was compared.For this, we obtained whole NS and S rabbit uteri and subjected them to an adapted decellularizationprotocol. The acellular endometrium was carefully separated by microdissection and converted into apre-gel solution to be used as hydrogels and coatings forin vitroassays. First, the characteristics of theseNS and S hydrogels were investigated by proteomic analysis, electron microscopy and gelling kinetics.When used as substrata for day 3 embryos culture, it became apparent that only the acellular ECM fromsynchronous endometrial coating achieved similar results to the gold standard culture protocols and con-ditions, possibly because of the slow release of growth factors present in the synchronous/proliferatingendometrium.
    The Role of Lactate Metabolism in Prostate Cancer Progression and Metastases Revealed by Dual-Agent Hyperpolarized 13C MRSI
    Robert Bok - 2019
    This study applied a dual-agent, 13C-pyruvate and 13C-urea, hyperpolarized 13C magnetic resonance spectroscopic imaging (MRSI) and multi-parametric (mp) 1H magnetic resonance imaging (MRI) approach in the transgenic adenocarcinoma of mouse prostate (TRAMP) model to investigate changes in tumor perfusion and lactate metabolism during prostate cancer development, progression and metastases, and after lactate dehydrogenase-A (LDHA) knock-out. An increased Warburg effect, as measured by an elevated hyperpolarized (HP) Lactate/Pyruvate (Lac/Pyr) ratio, and associated Ldha expression and LDH activity were significantly higher in high- versus low-grade TRAMP tumors and normal prostates. The hypoxic tumor microenvironment in high-grade tumors, as measured by significantly decreased HP 13C-urea perfusion and increased PIM staining, played a key role in increasing lactate production through increased Hif1α and then Ldha expression. Increased lactate induced Mct4 expression and an acidic tumor microenvironment that provided a potential mechanism for the observed high rate of lymph node (86%) and liver (33%) metastases. The Ldha knockdown in the triple-transgenic mouse model of prostate cancer resulted in a significant reduction in HP Lac/Pyr, which preceded a reduction in tumor volume or apparent water diffusion coefficient (ADC). The Ldha gene knockdown significantly reduced primary tumor growth and reduced lymph node and visceral metastases. These data suggested a metabolic transformation from low- to high-grade prostate cancer including an increased Warburg effect, decreased perfusion, and increased metastatic potential. Moreover, these data suggested that LDH activity and lactate are required for tumor progression. The lactate metabolism changes during prostate cancer provided the motivation for applying hyperpolarized 13C MRSI to detect aggressive disease at diagnosis and predict early therapeutic response.
    A Protective Role for the Lectin CD169/Siglec-1 against a Pathogenic Murine Retrovirus
    Pradeep D. Uchil - 2019
    Lymph- and blood-borne retroviruses exploit CD169/Siglec-1-mediated capture by subcapsular sinus and marginal zone metallophilic macrophages for trans-infection of permissive lymphocytes. However, the impact of CD169-mediated virus capture on retrovirus dissemination and pathogenesis in vivo is unknown. In a murine model of the splenomegaly-inducing retrovirus Friend virus complex (FVC) infection, we find that while CD169 promoted draining lymph node infection, it limited systemic spread to the spleen. At the spleen, CD169-expressing macrophages captured incoming blood-borne retroviruses and limited their spread to the erythroblasts in the red pulp where FVC manifests its pathogenesis. CD169-mediated retroviral capture activated conventional dendritic cells 1 (cDC1s) and promoted cytotoxic CD8+ T cell responses, resulting in efficient clearing of FVC-infected cells. Accordingly, CD169 blockade led to higher viral loads and accelerated death in susceptible mouse strains. Thus, CD169 plays a protective role during FVC pathogenesis by reducing viral dissemination to erythroblasts and eliciting an effective cytotoxic T lymphocyte response via cDC1s.
    Blocking IL-1β reverses the immunosuppression in mouse breast cancer and synergizes with anti–PD-1 for tumor abrogation
    Irena Kaplanov - 2019
    Interleukin-1β (IL-1β) is abundant in the tumor microenvironment, where this cytokine can promote tumor growth, but also antitumor activities. We studied IL-1β during early tumor progression using a model of orthotopically introduced 4T1 breast cancer cells. Whereas there is tumor progression and spontaneous metastasis in wild-type (WT) mice, in IL-1β–deficient mice, tumors begin to grow but subsequently regress. This change is due to recruitment and differentiation of inflammatory monocytes in the tumor microenvironment. In WT mice, macrophages heavily infiltrate tumors, but in IL-1β–deficient mice, low levels of the chemokine CCL2 hamper recruitment of monocytes and, together with low levels of colony-stimulating factor-1 (CSF-1), inhibit their differentiation into macrophages. The low levels of macrophages in IL-1β– deficient mice result in a relatively high percentage of CD11b+ dendritic cells (DCs) in the tumors. In WT mice, IL-10 secretion from macrophages is dominant and induces immunosuppression and tumor progression; in contrast, in IL-1β–deficient mice, IL-12 secretion by CD11b+ DCs prevails and supports antitumor immunity. The antitumor immunity in IL-1β–deficient mice includes activated CD8+ lymphocytes expressing IFN-γ, TNF-α, and granzyme B; these cells infiltrate tumors and induce regression. WT mice with 4T1 tumors were treated with either anti–IL-1β or anti–PD-1 Abs, each of which resulted in partial growth inhibition. However, treating mice first with anti–IL-1β Abs followed by anti– PD-1 Abs completely abrogated tumor progression. These data define microenvironmental IL-1β as a master cytokine in tumor progression. In addition to reducing tumor progression, blocking IL-1β facilitates checkpoint inhibition.
    Epiregulin is released from intervertebral disks and induces spontaneous activity in pain pathways
    Mette Kongstop - 2019
    Introduction: Lumbar radicular pain after disk herniation is associated with local release of many inflammatory molecules from nucleus pulposus (NP) cells leaking out of the intervertebral disk. Here, we have used a rat model to investigate the role of epiregulin (EREG), a member of the epidermal growth factor (EGF) family, in this process. Methods: A protein immunoassay was chosen to confirm the release of EREG from the NP tissue. Single unit recordings were used to demonstrate the effect of recombinant EREG applied onto the dorsal nerve roots in vivo. Intracellular responses induced by recombinant EREG were studied in cultured dorsal root ganglion (DRG) cells by phosphoprotein assay. Changes in EGF receptor expression induced by NP in the DRG were examined by quantitative polymerase chain reaction. Results: The protein immunoassay showed that EREG was released from the NP tissue. Moreover, application of EREG onto the spinal dorsal nerve roots induced a decrease in the evoked responses, but an increase in spontaneous activity in the dorsal horn neurons. Interestingly, the EREG activated the phosphatidylinositol 3-kinase (PI3K)/Akt pathway in the DRG, a pathway previously linked to cellular growth, proliferation, and tissue regeneration. An NP-induced upregulation of the EGF receptor HER3 in the DRG was also revealed. Conclusion: Taken together, the present observations indicate that EREG may induce changes in the DRG and spontaneous activity in the pain pathways. We suggest that EREG signaling may be involved in the pathophysiological process leading to sensory deficits and neuropathic pain in patients after disk herniation.
    CSDC2, a cold shock domain RNA‐binding protein in decidualization
    Griselda Vallejo - 2019
    RNA‐binding proteins (RBPs) have been described for cancer cell progression and differentiation, although there is still much to learn about their mechanisms. Here, using in vivo decidualization as a model, we describe the role of RBP cold shock domain containing C2 (CSDC2) in the endometrium. Csdc2 messenger RNA expression was differentially regulated depending on time and areas of decidua development, with the most variation in antimesometrium (AM) and, to a lesser degree, in the junctional zone (JZ). Immunohistochemistry of CSDC2 showed a preferentially cytoplasmic localization at AM and JZ, and nuclear localization in underneath myometrium and mesometrium (M). Cytoplasmic localization coincided with differentiated, DESMIN‐marked areas, while nuclear localization coincides with proliferative zones. Uterine suppression of CSDC2 through intrauterine‐injected‐specific small interfering RNA (siRNA) led to abnormal decidualization in early pregnancy, with more extended antimesometrial area and with poor M development if compared with control siRNA‐injected animals. These results suggest that CSDC2 could be a regulator during decidua development.
    Eukaryotic initiation factor 5B (eIF5B) provides a critical cell survival switch to glioblastoma cells via regulation of apoptosis
    Joseph A. Ross - 2019
    Physiological stress conditions attenuate global mRNA translation via modifications of key eukaryotic initiation factors. However, non-canonical translation initiation mechanisms allow cap-independent translation of certain mRNAs. We have previously demonstrated that eIF5B promotes cap-independent translation of the mRNA encoding the antiapoptotic factor, XIAP, during cellular stress. Here, we show that depletion of eIF5B sensitizes glioblastoma multiforme cells to TRAIL-induced apoptosis by a pathway involving caspases-8, −9, and −7, with no significant effect on cell cycle progression. eIF5B promotes evasion of apoptosis by promoting the translation of several IRES-containing mRNAs, encoding the antiapoptotic proteins XIAP, Bcl-xL, cIAP1, and c-FLIPS. We also show that eIF5B promotes translation of nuclear factor erythroid 2-related factor 2 and suggest that reactive oxygen species contribute to increased apoptosis under conditions of eIF5B depletion. Finally, eIF5B depletion leads to decreased activation of the canonical NF-κB pathway. Taken together, our data suggest that eIF5B represents a regulatory node, allowing cancer cells to evade apoptosis by promoting the translation of pro-survival proteins from IRES-containing mRNAs.
    Specific loss of adipocyte CD248 improves metabolic health via reduced white adipose tissue hypoxia, fibrosis and inflammation
    Paul Petrus - 2019
    Background A positive energy balance promotes white adipose tissue (WAT) expansion which is characterized by activation of a repertoire of events including hypoxia, inflammation and extracellular matrix remodelling. The transmembrane glycoprotein CD248 has been implicated in all these processes in different malignant and inflammatory diseases but its potential impact in WAT and metabolic disease has not been explored. Methods The role of CD248 in adipocyte function and glucose metabolism was evaluated by omics analyses in human WAT, gene knockdowns in human in vitro differentiated adipocytes and by adipocyte-specific and inducible Cd248 gene knockout studies in mice. Findings CD248 is upregulated in white but not brown adipose tissue of obese and insulin-resistant individuals. Gene ontology analyses showed that CD248 expression associated positively with pro-inflammatory/pro-fibrotic pathways. By combining data from several human cohorts with gene knockdown experiments in human adipocytes, our results indicate that CD248 acts as a microenvironmental sensor which mediates part of the adipose tissue response to hypoxia and is specifically perturbed in white adipocytes in the obese state. Adipocyte-specific and inducible Cd248 knockouts in mice, both before and after diet-induced obesity and insulin resistance/glucose intolerance, resulted in increased microvascular density as well as attenuated hypoxia, inflammation and fibrosis without affecting fat cell volume. This was accompanied by significant improvements in insulin sensitivity and glucose tolerance. Interpretation CD248 exerts detrimental effects on WAT phenotype and systemic glucose homeostasis which may be reversed by suppression of adipocyte CD248. Therefore, CD248 may constitute a target to treat obesity-associated co-morbidities.
    Impaired HDL Function Amplifies Systemic Inflammation in Common Variable Immunodeficiency
    Magnhild E. Macpherson - 2019
    Common variable immunodeficiency (CVID) is the most common symptomatic primary immunodeficiency, characterized by inadequate antibody responses and recurrent bacterial infections. Paradoxically, a majority of CVID patients have non-infectious inflammatory and autoimmune complications, associated with systemic immune activation. Our aim was to explore if HDL, known to have anti-inflammatory properties, had impaired function in CVID patients and thereby contributed to their inflammatory phenotype. We found reduced HDL cholesterol levels in plasma of CVID patients compared to healthy controls, particularly in patients with inflammatory and autoimmune complications, correlating negatively with inflammatory markers CRP and sCD25. Reverse cholesterol transport capacity testing showed reduced serum acceptance capacity for cholesterol in CVID patients with inflammatory and autoimmune complications. They also had reduced cholesterol efflux capacity from macrophages to serum and decreased expression of ATP-binding cassette transporter ABCA1. Human HDL suppressed TLR2-induced TNF release less in blood mononuclear cells from CVID patients, associated with decreased expression of transcriptional factor ATF3. Our data suggest a link between impaired HDL function and systemic inflammation in CVID patients, particularly in those with autoimmune and inflammatory complications. This identifies HDL as a novel therapeutic target in CVID as well as other more common conditions characterized by sterile inflammation or autoimmunity.
    Single-Cell Fluorescence Analysis of Pseudotemporal Ordered Cells Provides Protein Expression Dynamics for Neuronal Differentiation
    Zhichao Song - 2019
    Stem cell replacement therapy is a potential method for repopulating lost spiral ganglion neurons (SGNs) in the inner ear. Efficacy of cell replacement relies on proper differentiation. Defining the dynamic expression of different transcription factors essential for neuronal differentiation allows us to monitor the progress and determine when the protein functions in differentiating stem cell cultures. Using immortalized multipotent otic progenitors (iMOPs) as a cellular system for SGN differentiation, a method for determining dynamic protein expression from heterogeneous cultures was developed. iMOP-derived neurons were identified and ordered by increasing neurite lengths to create a pseudotime course that reflects the differentiation trajectory. The fluorescence intensities of transcription factors SOX2 and NEUROD1 from individual pseudotemporally ordered cells were measured. Individual cells were grouped by K-means clustering and the mean fluorescence intensity for each cluster determined. Curve fit of the mean fluorescence represented the protein expression dynamics in differentiating cells. The method provides information about protein expression dynamics in differentiating stem cell cultures.
    The unfolded protein response modulators GSK2606414 and KIRA6 are potent KIT inhibitors
    Mohamed Mahameed - 2019
    IRE1, PERK, and ATF6 are the three transducers of the mammalian canonical unfolded protein response (UPR). GSK2606414 is a potent inhibitor of PERK, while KIRA6 inhibits the kinase activity of IRE1. Both molecules are frequently used to probe the biological roles of the UPR in mammalian cells. In a direct binding assay, GSK2606414 bound to the cytoplasmic domain of KIT with dissociation constants (Kd) value of 664 ± 294 nM whereas KIRA6 showed a Kd value of 10.8 ± 2.9 µM. In silico docking studies confirmed a compact interaction of GSK2606414 and KIRA6 with KIT ATP binding pocket. In cultured cells, GSK2606414 inhibited KIT tyrosine kinase activity at nanomolar concentrations and in a PERK-independent manner. Moreover, in contrast to other KIT inhibitors, GSK2606414 enhanced KIT endocytosis and its lysosomal degradation. Although KIRA6 also inhibited KIT at nanomolar concentrations, it did not prompt KIT degradation, and rescued KIT from GSK2606414-mediated degradation. Consistent with KIT inhibition, nanomolar concentrations of GSK2606414 and KIRA6 were sufficient to induce cell death in a KIT signaling-dependent mast cell leukemia cell line. Our data show for the first time that KIT is a shared target for two seemingly unrelated UPR inhibitors at concentrations that overlap with PERK and IRE1 inhibition. Furthermore, these data underscore discrepancies between in vitro binding measurements of kinase inhibitors and inhibition of the tyrosine kinase receptors in living cells.
    A. Islam - 2019
    Mesenchymal stromal cells (MSCs), given their regenerative potential, are being investigated as a potential therapeutic tool for cartilage lesions. MSCs express several bioactive molecules which act in a paracrine fashion to modulate the tissue microenvironment. Yet, little is known about the divergence of these signalling molecules in different MSC populations. The present study investigated secretomes of stromal cells harvested from Hoffa’s fat pad (HFPSCs), synovial membrane (SMSCs), umbilical cord (UCSCs) and cartilage (ACs) by quantitative liquid chromatography-mass spectrometry (LC-MS/MS) proteomics. Also, multiplex protein arrays and functional assays were performed to compare the constitutive immunomodulatory capabilities of different MSCs. Proteins involved in extracellular matrix degradation and inflammation, such as matrix metalloproteinases (MMPs), interleukin (IL)-17 and complement factors, were downregulated in UCSCs as compared to adult cell sources. Additionally, secretion of transforming growth factor (TGF)-β1 and prostaglandin E2 (PGE2) was enhanced in UCSC supernatants. UCSCs were superior in inhibiting peripheral blood mononuclear cell (PBMC) proliferation, migration and cytokine secretion as compared to adult stromal cells. SMSCs significantly suppressed the proliferation of PBMCs only if they were primed with pro-inflammatory cytokines. Although all cell types repressed human leukocyte antigen-DR isotype (HLADR) surface expression and cytokine release by activated macrophages, only UCSCs significantly blocked IL-6 and IL-12 production. Furthermore, UCSCs supernatants increased aggrecan gene expression in twodimensional chondrocyte cultures. The data demonstrated that UCSCs displayed superior anti-inflammatory and immunosuppressive properties than stromal cells from adult tissues. This allogeneic cell source could potentially be considered as an adjuvant therapy for articular cartilage repair
    A Ubiquitous Platform for Bacterial Nanotube Biogenesis
    Saurabh Bhattacharya - 2019
    We have previously described the existence of membranous nanotubes, bridging adjacent bacteria, facilitating intercellular trafficking of nutrients, cytoplasmic proteins, and even plasmids, yet components enabling their biogenesis remain elusive. Here we reveal the identity of a molecular apparatus providing a platform for nanotube biogenesis. Using Bacillus subtilis (Bs), we demonstrate that conserved components of the flagellar export apparatus (FliO, FliP, FliQ, FliR, FlhB, and FlhA), designated CORE, dually serve for flagellum and nanotube assembly. Mutants lacking CORE genes, but not other flagellar components, are deficient in both nanotube production and the associated intercellular molecular trafficking. In accord, CORE components are located at sites of nanotube emergence. Deleting COREs of distinct species established that CORE-mediated nanotube formation is widespread. Furthermore, exogenous COREs from diverse species could restore nanotube generation and functionality in Bs lacking endogenous CORE. Our results demonstrate that the CORE-derived nanotube is a ubiquitous organelle that facilitates intercellular molecular trade across the bacterial kingdom.
    LACC1 Regulates TNF and IL-17 in Mouse Models of Arthritis and Inflammation
    Cara Skon-Hegg - 2019
    Both common and rare genetic variants of laccase domain-containing 1 (LACC1, previously C13orf31) are associated with inflammatory bowel disease, leprosy, Behcet disease, and systemic juvenile idiopathic arthritis. However, the functional relevance of these variants is unclear. In this study, we use LACC1-deficient mice to gain insight into the role of LACC1 in regulating inflammation. Following oral administration of Citrobacter rodentium, LACC1 knockout (KO) mice had more severe colon lesions compared with wildtype (WT) controls. Immunization with collagen II, a collagen-induced arthritis (CIA) model, resulted in an accelerated onset of arthritis and significantly worse arthritis and inflammation in LACC1 KO mice. Similar results were obtained in a mannan-induced arthritis model. Serum and local TNF in CIA paws and C. rodentium colons were significantly increased in LACC1 KO mice compared with WT controls. The percentage of IL-17A–producing CD4+ T cells was elevated in LACC1 KO mice undergoing CIA as well as aged mice compared with WT controls. Neutralization of IL-17, but not TNF, prevented enhanced mannan-induced arthritis in LACC1 KO mice. These data provide new mechanistic insight into the function of LACC1 in regulating TNF and IL-17 during inflammatory responses. We hypothesize that these effects contribute to immune-driven pathologies observed in individuals carrying LACC1 variants.
    Serine protease inhibitors rich Coccinia grandis (L.) Voigt leaf extract induces protective immune responses in murine visceral leishmaniasis
    Asmita Pramanik - 2019
    Leishmaniasis is a parasite-mediated tropical disease affecting millions of individuals worldwide. The available antileishmanial chemotherapeutic modalities exhibit adverse toxicity, exorbitant price and advent of drug-resistant parasites. Hence, plant-derived products are an alternative preference for the emergence of novel and effective antileishmanial agents that rejuvenate the host immunity with limited toxicity. The present work is complementary to our previous report that revealed the in vitro antileishmanial and immunomodulatory activity of Coccinia grandis (L.) Voigt leaf extract (Cg-Ex) rich in serine protease inhibitors. Thus, preliminary objectives of the study were to elucidate the leishmanicidal activity and host effector mechanism in Leishmania donovani infected BALB/c mice treated with Cg-Ex. Oral administration of Cg-Ex significantly reduced the spleen and liver parasite burden at dose-dependently. The parasite elimination was associated with generation of ROS and NO that are interrelated with up-regulation of disease-suppressing Th1 cytokines and down-regulation of disease-promoting Th2 cytokines at both protein and mRNA level. Moreover, Cg-Ex augmented the delayed-type hypersensitivity (DTH) response and serum IgG2a level which are correlated with the diminution of parasite burden with no hepatic and renal toxicity. Additionally, histological analysis of spleen depicted the improvement of structural disorganization of white and red pulp after Cg-Ex treatment. Therefore, our intriguing findings have presented the first indication of in vivo antileishmanial efficacy through activation of pro-inflammatory immune responses of the host by a natural plant leaf extract (Cg-Ex) containing serine protease inhibitors which could have a role as a potential immunomodulator against visceral leishmaniasis.
    Kinetic studies on clinical and immunological modulations by intramuscular injection of Escherichia coli LPS in laying hens
    Wendy Leirmann - 2019
    The present study investigated clinical and immunological modulations due to intramuscular injection of Escherichia coli LPS in 49-wk-old laying hens over 48 h post injection (p.i.). LPS induced characteristic sickness behavior but no significant body temperature alterations (P > 0.05). During experimental period decreases in blood albumin, calcium, phosphorus and tryptophan concentrations, hyperglycemia, increased plasma nitrite concentrations, leucopenia, decreased thrombocyte counts, lymphopenia, heterophilia and an increased heterophilic granulocyte/lymphocyte (H/L) ratio were observed after LPS administration. Time-dependent effects were shown on T and B cell subsets in caecal tonsils (CT) and on splenic CD3+/CD4+/CD8+ proportions, on IL-1β and -10 and inducible NO synthase mRNA expression in peripheral blood lymphocytes (PBL), liver, spleen and CT, and on the mRNA expression of the TLR4 in PBL, liver and spleen p.i. (P < 0.05). The main responding period of mentioned alterations due to LPS appears to include the period from 2 until 8 h p.i. According to the H/L ratio, the most stressful phase was 5 h p.i. T and B cell subsets in CT, the IL-1β and TLR4 mRNA expression in liver and plasma nitrite concentrations seemed to be affected for a longer period.
    A novel nonosteocytic regulatory mechanism of bone modeling
    Lior Ofer - 2019
    Osteocytes, cells forming an elaborate network within the bones of most vertebrate taxa, are thought to be the master regulators of bone modeling, a process of coordinated, local bone-tissue deposition and removal that keeps bone strains at safe levels throughout life. Neoteleost fish, however, lack osteocytes and yet are known to be capable of bone modeling, although no osteocyte-independent modeling regulatory mechanism has so far been described. Here, we characterize a novel, to our knowledge, bone-modeling regulatory mechanism in a fish species (medaka), showing that although lacking osteocytes (i.e., internal mechanosensors), when loaded, medaka bones model in mechanically directed ways, successfully reducing high tissue strains. We establish that as in mammals, modeling in medaka is regulated by the SOST gene, demonstrating a mechanistic link between skeletal loading, SOST down-regulation, and intense bone deposition. However, whereas mammalian SOST is expressed almost exclusively by osteocytes, in both medaka and zebrafish (a species with osteocytic bones), SOST is expressed by a variety of nonosteocytic cells, none of which reside within the bone bulk. These findings argue that in fishes (and perhaps other vertebrates), nonosteocytic skeletal cells are both sensors and responders, shouldering duties believed exclusive to osteocytes. This previously unrecognized, SOST-dependent, osteocyte-independent mechanism challenges current paradigms of osteocyte exclusivity in bone-modeling regulation, suggesting the existence of multivariate feedback networks in bone modeling—perhaps also in mammalian bones—and thus arguing for the possibility of untapped potential for cell targets in bone therapeutics.
    Effects of a synthetic di‐phosphoserine peptide (SS‐2) on gene expression profiling against TNF‐α induced inflammation
    Hua Zhang - 2019
    It has been showed bioactive di‐phosphoserine peptide (SS‐2) possesses functions to ameliorate oxidative stress in vitro. This study aimed to substantiate the role of bioactive di‐phosphoserine peptide (SS‐2) in modulating inflammatory responses in TNF‐α‐stimulated HT‐29 cells, and its mechanism of action. SS‐2 significantly reduced IL‐8 secretion in TNF‐α‐induced HT‐29 cells, and also suppressed pro‐inflammatory cytokines, including IL‐8, IL‐12, MCP‐1 and TNF‐α. Moreover, SS‐2 inhibited TNF‐α initiated signalling cascades by suppressing phosphorylation of the ERK1/2, JNK, P38 and IκB those culminate in above cellular inflammatory responses. Differentially expressed genes analysis within NF‐κB signalling pathway revealed that SS‐2 blocks multiple sites of upstream NF‐κB signalling cascade, including FADD and MyD88, thereby preventing the signalling transduction involved in cellular inflammatory response. These results provide a new insight into molecular mechanism for anti‐inflammatory action of SS‐2, suggesting SS‐2 is a potential alternative approach to treat IBD by particular targeting TNF‐α driven inflammatory event.
    In vitro chondrogenic potency of surplus chondrocytes from autologous transplantation procedures does not predict short-term clinical outcomes
    Ashraful Islam - 2019
    Background Autologous chondrocyte implantation (ACI) has been used over the last two decades to treat focal cartilage lesions aiming to delay or prevent the onset of osteoarthritis; however, some patients do not respond adequately to the procedure. A number of biomarkers that can forecast the clinical potency of the cells have been proposed, but evidence for the relationship between in vitro chondrogenic potential and clinical outcomes is missing. In this study, we explored if the ability of cells to make cartilage in vitro correlates with ACI clinical outcomes. Additionally, we evaluated previously proposed chondrogenic biomarkers and searched for new biomarkers in the chondrocyte proteome capable of predicting clinical success or failure after ACI. Methods The chondrogenic capacity of chondrocytes derived from 14 different donors was defined based on proteoglycans staining and visual histological grading of tissues generated using the pellet culture system. A Lysholm score of 65 two years post-ACI was used as a cut-off to categorise “success” and “failure” clinical groups. A set of predefined biomarkers were investigated in the chondrogenic and clinical outcomes groups using flow cytometry and qPCR. High-throughput proteomics of cell lysates was used to search for putative biomarkers to predict chondrogenesis and clinical outcomes. Results Visual histological grading of pellets categorised donors into “high” and “low” chondrogenic groups. Direct comparison between donor-matched in vitro chondrogenic potential and clinical outcomes revealed no significant associations. Comparative analyses of selected biomarkers revealed that expression of CD106 and TGF-β-receptor-3 was enhanced in the low chondrogenic group, while expression of integrin-α1 and integrin-β1 was significantly upregulated in the high chondrogenic group. Additionally, increased surface expression of CD166 was observed in the clinical success group, while the gene expression of cartilage oligomeric matrix protein was downregulated. High throughput proteomics revealed no differentially expressed proteins from success and failure clinical groups, whereas seven proteins including prolyl-4-hydroxylase 1 were differentially expressed when comparing chondrogenic groups. Conclusion In our limited material, we found no correlation between in vitro cartilage-forming capacity and clinical outcomes, and argue on the limitations of using the chondrogenic potential of cells or markers for chondrogenesis as predictors of clinical outcomes.
    Cellulose nanocrystals modulate alveolar macrophage phenotype and phagocytic function
    Johanna Samulin Erdem - 2019
    Nanocellulose is a promising bio-nanomaterial with attractive properties suitable for multiple industrial applications. The increased use of nanocellulose may lead to occupational exposure and negative health outcomes. However, knowledge on its health effects is limited, and while nanocellulose exposure may induce acute inflammatory responses in the lung, the underlying mechanisms are unknown. Alveolar macrophages are key cells in alveolar particle clearance. Their activation and function may be affected by various particles. Here, we investigated the uptake of pristine cellulose nanocrystals (CNC), and their effects on alveolar macrophage polarization and biological function. CNC uptake enhanced the secretion of several cytokines but did not on its own induce a complete macrophage polarization. In presence of macrophage activators, such as LPS/IFNG and IL4/IL13, CNC exposure enhanced the expression of M1 phenotype markers and the secretion of pro-inflammatory cytokines and chemokines, while decreasing M2 markers. CNC exposure also affected the function of activated alveolar macrophages resulting in a prominent cytokine burst and altered phagocytic activity. In conclusion, CNC exposure may result in dysregulation of macrophage activation and function that are critical in inflammatory responses in the lung.
    Defective IgA response to atypical intestinal commensals in IL-21 receptor deficiency reshapes immune cell homeostasis and mucosal immunity
    Hyeson Cho - 2019
    Despite studies indicating the effects of IL-21 signaling in intestinal inflammation, its roles in intestinal homeostasis and infection are not yet clear. Here, we report potent effects of commensal microbiota on the phenotypic manifestations of IL-21 receptor deficiency. IL-21 is produced highly in the small intestine and appears to be critical for mounting an IgA response against atypical commensals such as segmented filamentous bacteria and Helicobacter, but not to the majority of commensals. In the presence of these atypical commensals, IL-21R-deficient mice exhibit reduced numbers of germinal center and IgA+ B cells and expression of activation-induced cytidine deaminase in Peyer’s patches as well as a significant decrease in small intestine IgA+ plasmablasts and plasma cells, leading to higher bacterial burdens and subsequent expansion of Th17 and Treg cells. These microbiota-mediated secondary changes in turn enhance T cell responses to an oral antigen and strikingly dampen Citrobacter rodentium-induced immunopathology, demonstrating a complex interplay between IL-21-mediated mucosal immunity, microbiota, and pathogens.
    S-Nitrosylation of α1-Antitrypsin Triggers Macrophages Toward Inflammatory Phenotype and Enhances Intra-Cellular Bacteria Elimination
    Ziv Kaner - 2019
    Background: Human α1-antitrypsin (hAAT) is a circulating anti-inflammatory serine-protease inhibitor that rises during acute phase responses. in vivo, hAAT reduces bacterial load, without directly inhibiting bacterial growth. In conditions of excess nitric-oxide (NO), hAAT undergoes S-nitrosylation (S-NO-hAAT) and gains antibacterial capacity. The impact of S-NO-hAAT on immune cells has yet to be explored. Aim: Study the effects of S-NO-hAAT on immune cells during bacterial infection. Methods: Clinical-grade hAAT was S-nitrosylated and then compared to unmodified hAAT, functionally, and structurally. Intracellular bacterial clearance by THP-1 macrophages was assessed using live Salmonella typhi. Murine peritoneal macrophages were examined, and signaling pathways were evaluated. S-NO-hAAT was also investigated after blocking free mambranal cysteine residues on cells. Results: S-NO-hAAT (27.5 uM) enhances intracellular bacteria elimination by immunocytes (up to 1-log reduction). S-NO-hAAT causes resting macrophages to exhibit a pro-inflammatory and antibacterial phenotype, including release of inflammatory cytokines and induction of inducible nitric oxide synthase (iNOS) and TLR2. These pro-inflammatory effects are dependent upon cell surface thiols and activation of MAPK pathways. Conclusions: hAAT duality appears to be context-specific, involving S-nitrosylation in a nitric oxide rich environment. Our results suggest that S-nitrosylation facilitates the antibacterial activity of hAAT by promoting its ability to activate innate immune cells. This pro-inflammatory effect may involve transferring of nitric oxide from S-NO-hAAT to a free cysteine residue on cellular targets.
    B cell activation and proliferation increase intracellular zinc levels
    Johanna Ollig - 2019
    Zinc ions serve as second messengers in major cellular pathways, including the regulation pathways of proliferation and their proper regulation is necessary for homeostasis and a healthy organism. Accordingly, expression of zinc transporters can be altered in various cancer cell lines and is often involved in producing elevated intracellular zinc levels. In this study, human B cells were infected with Epstein–Barr virus (EBV) to generate immortalized cells, which revealed traits of tumor cells, such as high proliferation rates and an extended lifespan. These cells showed differentially altered zinc transporter expression with ZIP7 RNA and protein expression being especially increased as well as a corresponding increased phosphorylation of ZIP7 in EBV-transformed B cells. Accordingly, free zinc levels were elevated within these cells. To prove whether the observed changes resulted from immortalization or rather high proliferation, free zinc levels in in vitro activated B cells and in freshly isolated B cells expressing the activation marker CD69 were determined. Here, comparatively increased zinc levels were found, suggesting that activation and proliferation, but not immortalization, act as crucial factors for the elevation of intracellular free zinc.
    MiR-135 suppresses glycolysis and promotes pancreatic cancer cell adaptation to metabolic stress by targeting phosphofructokinase-1
    Ying Yang - 2019
    Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal human cancers. It thrives in a nutrient-poor environment; however, the mechanisms by which PDAC cells undergo metabolic reprogramming to adapt to metabolic stress are still poorly understood. Here, we show that microRNA-135 is significantly increased in PDAC patient samples compared to adjacent normal tissue. Mechanistically, miR-135 accumulates specifically in response to glutamine deprivation and requires ROS-dependent activation of mutant p53, which directly promotes miR-135 expression. Functionally, we found miR-135 targets phosphofructokinase-1 (PFK1) and inhibits aerobic glycolysis, thereby promoting the utilization of glucose to support the tricarboxylic acid (TCA) cycle. Consistently, miR-135 silencing sensitizes PDAC cells to glutamine deprivation and represses tumor growth in vivo. Together, these results identify a mechanism used by PDAC cells to survive the nutrient-poor tumor microenvironment, and also provide insight regarding the role of mutant p53 and miRNA in pancreatic cancer cell adaptation to metabolic stresses.
    Co-administering Melatonin With an Estradiol-Progesterone Menopausal Hormone Therapy Represses Mammary Cancer Development in a Mouse Model of HER2-Positive Breast Cancer
    Balasunder R. Dodda - 2019
    Melatonin has numerous anti-cancer properties reported to influence cancer initiation, promotion, and metastasis. With the need for effective hormone therapies (HT) to treat menopausal symptoms without increasing breast cancer risk, co-administration of nocturnal melatonin with a natural, low-dose HT was evaluated in mice that develop primary and metastatic mammary cancer. Individually, melatonin (MEL) and estradiol-progesterone therapy (EPT) did not significantly affect mammary cancer development through age 14 months, but, when combined, the melatonin-estradiol-progesterone therapy (MEPT) significantly repressed tumor formation. This repression was due to effects on tumor incidence, but not latency. These results demonstrate that melatonin and the HT cooperate to decrease the mammary cancer risk. Melatonin and EPT also cooperate to alter the balance of the progesterone receptor (PR) isoforms by significantly increasing PRA protein expression only in MEPT mammary glands. Melatonin significantly suppressed amphiregulin transcripts in MEL and MEPT mammary glands, suggesting that amphiregulin together with the higher PRA:PRB balance and other factors may contribute to reducing cancer development in MEPT mice. Melatonin supplementation influenced mammary morphology by increasing tertiary branching in the mouse mammary glands and differentiation in human mammary epithelial cell cultures. Uterine weight in the luteal phase was elevated after long-term exposure to EPT, but not to MEPT, indicating that melatonin supplementation may reduce estrogen-induced uterine stimulation. Melatonin supplementation significantly decreased the incidence of grossly-detected lung metastases in MEL mice, suggesting that melatonin delays the formation of metastatic lesions and/or decreases aggressiveness in this model of HER2+ breast cancer. Mammary tumor development was similar in EPT and MEPT mice until age 8.6 months, but after 8.6 months, only MEPT continued to suppress cancer development. These data suggest that melatonin supplementation has a negligible effect in young MEPT mice, but is required in older mice to inhibit tumor formation. Since melatonin binding was significantly decreased in older mammary glands, irrespective of treatment, melatonin supplementation may overcome reduced melatonin responsiveness in the aged MEPT mice. Since melatonin levels are known to decline near menopause, nocturnal melatonin supplementation may also be needed in aging women to cooperate with HT to decrease breast cancer risk.
    Autophagy Regulation of Metabolism Is Required for CD8+ T Cell Anti-tumor Immunity
    Lindsay DeVorkin - 2019
    Autophagy is a cell survival process essential for the regulation of immune responses to infections. However, the role of T cell autophagy in anti-tumor immunity is less clear. Here, we demonstrate a cell-autonomous role for autophagy in the regulation of CD8+ T-cell-mediated control of tumors. Mice deficient for the essential autophagy genes Atg5, Atg14, or Atg16L1 display a dramatic impairment in the growth of syngeneic tumors. Moreover, T cells lacking Atg5 have a profound shift to an effector memory phenotype and produce greater amounts of interferon-γ (IFN-γ) and tumor necrosis factor α (TNF-α). Mechanistically, Atg5−/− CD8+ T cells exhibit enhanced glucose metabolism that results in alterations in histone methylation, increases in H3K4me3 density, and transcriptional upregulation of both metabolic and effector target genes. Nonetheless, glucose restriction is sufficient to suppress Atg5-dependent increases in effector function. Thus, autophagy-dependent changes in CD8+ T cell metabolism directly regulate anti-tumor immunity.
    O-GlcNAc Transferase Inhibition Differentially Affects Breast Cancer Subtypes
    Anna Barkovskaya - 2019
    Post-translational modification of intracellular proteins with a single N-acetylglucosamine sugar (O-GlcNAcylation) regulates signaling, proliferation, metabolism and protein stability. In breast cancer, expression of the enzyme that catalyzes O-GlcNAcylation – O-GlcNAc-transferase (OGT), and the extent of protein O-GlcNAcylation, are upregulated in tumor tissue, and correlate with cancer progression. Here we compare the significance of O-GlcNAcylation in a panel of breast cancer cells of different phenotypes. We find a greater dependency on OGT among triple-negative breast cancer (TNBC) cell lines, which respond to OGT inhibition by undergoing cell cycle arrest and apoptosis. Searching for the cause of this response, we evaluate the changes in the proteome that occur after OGT inhibition or knock-down, employing a reverse-phase protein array (RPPA). We identify transcriptional repressor - hairy and enhancer of split-1 (HES1) - as a mediator of the OGT inhibition response in the TNBC cells. Inhibition of OGT as well as the loss of HES1 results in potent cytotoxicity and apoptosis. The study raises a possibility of using OGT inhibition to potentiate DNA damage in the TNBC cells.
    p53 Promotes Cancer Cell Adaptation to Glutamine Deprivation by Upregulating Slc7a3 to Increase Arginine Uptake
    Xazmin H. Lowman - 2019
    Cancer cells heavily depend on the amino acid glutamine to meet the demands associated with growth and proliferation. Due to the rapid consumption of glutamine, cancer cells frequently undergo glutamine starvation in vivo. We and others have shown that p53 is a critical regulator in metabolic stress resistance. To better understand the molecular mechanisms by which p53 activation promotes cancer cell adaptation to glutamine deprivation, we identified p53-dependent genes that are induced upon glutamine deprivation by using RNA-seq analysis. We show that Slc7a3, an arginine transporter, is significantly induced by p53. We also show that increased intracellular arginine levels following glutamine deprivation are dependent on p53. The influx of arginine has minimal effects on known metabolic pathways upon glutamine deprivation. Instead, we found arginine serves as an effector for mTORC1 activation to promote cell growth in response to glutamine starvation. Therefore, we identify a p53-inducible gene that contributes to the metabolic stress response.
    The Modulatory Role of MicroRNA-873 in the Progression of KRAS-Driven Cancers
    Hamada A. Mokhlis - 2019
    KRAS is one of the most frequently mutated proto-oncogenes in pancreatic ductal adenocarcinoma (PDAC) and aberrantly activated in triple-negative breast cancer (TNBC). A profound role of microRNAs (miRNAs) in the pathogenesis of human cancer is being uncovered, including in cancer therapy. Using in silico prediction algorithms, we identified miR-873 as a potential regulator of KRAS, and we investigated its role in PDAC and TNBC. We found that reduced miR-873 expression is associated with shorter patient survival in both cancers. miR-873 expression is significantly repressed in PDAC and TNBC cell lines and inversely correlated with KRAS levels. We demonstrate that miR-873 directly bound to the 3′ UTR of KRAS mRNA and suppressed its expression. Notably, restoring miR-873 expression induced apoptosis; recapitulated the effects of KRAS inhibition on cell proliferation, colony formation, and invasion; and suppressed the activity of ERK and PI3K/AKT, while overexpression of KRAS rescued the effects mediated by miR-873. Moreover, in vivo delivery of miR-873 nanoparticles inhibited KRAS expression and tumor growth in PDAC and TNBC tumor models. In conclusion, we provide the first evidence that miR-873 acts as a tumor suppressor by targeting KRAS and that miR-873-based gene therapy may be a therapeutic strategy in PDAC and TNBC.
    Dietary Tryptophan Induces Opposite Health-Related Responses in the Senegalese Sole (Solea senegalensis) Reared at Low or High Stocking Densities With Implications in Disease Resistance
    Rita Azeredo - 2019
    High rearing densities are typical conditions of both inland and onshore intensive aquaculture units. Despite obvious drawbacks, this strategy is nonetheless used to increase production profits. Such conditions inflict stress on fish, reducing their ability to cope with disease, bringing producers to adopt therapeutic strategies. In an attempt to overcome deleterious effects of chronic stress, Senegalese sole, Solea senegalensis, held at low (LD) or high density (HD) were fed tryptophan-supplemented diets with final tryptophan content at two (TRP2) or four times (TRP4) the requirement level, as well as a control and non-supplemented diet (CTRL) for 38 days. Fish were sampled at the end of the feeding trial for evaluation of their immune status, and mortalities were recorded following intra-peritoneal infection with Photobacterium damselae subsp. piscicida. Blood was collected for analysis of the hematological profile and innate immune parameters in plasma. Pituitary and hypothalamus were sampled for the assessment of neuro-endocrine-related gene expression. During the feeding trial, fish fed TRP4 and held at LD conditions presented higher mortalities, whereas fish kept at HD seemed to benefit from this dietary treatment, as disease resistance increased over that of CTRL-fed fish. In accordance, cortisol level tended to be higher in fish fed both supplemented diets at LD compared to fish fed CTRL, but was lower in fish fed TRP4 than in those fed TRP2 under HD condition. Together with lower mRNA levels of proopiomelanocortin observed with both supplementation levels, these results suggest that higher levels of tryptophan might counteract stress-induced cortisol production, thereby rendering fish better prepared to cope with disease. Data regarding sole immune status showed no clear effects of tryptophan on leucocyte numbers, but TRP4-fed fish displayed inhibited alternative complement activity (ACH50) when held at LD, as opposed to their HD counterparts whose ACH50 was higher than that of CTRL-fed fish. In conclusion, while dietary tryptophan supplementation might have harmful effects in control fish, it might prove to be a promising strategy to overcome chronic stress-induced disease susceptibility in farmed Senegalese sole.
    The autism/neuroprotection-linked ADNP/NAP regulate the excitatory glutamatergic synapse
    Schlomo Sragovich - 2019
    Activity-dependent neuroprotective protein (ADNP), essential for brain formation, was discovered as a leading de novo mutated gene causing the autism-like ADNP syndrome. This syndrome is phenotypically characterized by global developmental delays, intellectual disabilities, speech impediments, and motor dysfunctions. The Adnp haploinsufficient mouse mimics the human ADNP syndrome in terms of synapse density and gene expression patterns, as well as in developmental, motor, and cognitive abilities. Peripheral ADNP was also discovered as a biomarker for Alzheimer’s disease and schizophrenia, with nasal administration of the ADNP snippet peptide NAP (enhancing endogenous ADNP activity) leading to partial cognitive and functional protection at the cellular, animal and clinical settings. Here, a novel formulation for effective delivery of NAP is provided with superior brain penetration capabilities. Also provided are methods for treating pertinent clinical implications such as autism, cognitive impairments, olfactory deficits, and muscle strength using the formulation in the Adnp haploinsufficient mouse. Results showed a dramatically specific increase in brain/body bioavailability with the new formulation, without breaching the blood brain barrier. Additional findings included improvements using daily intranasal treatments with NAP, at the behavioral and brain structural levels, diffusion tensor imaging (DTI), translatable to clinical practice. Significant effects on hippocampal and cerebral cortical expression of the presynaptic Slc17a7 gene encoding vesicular excitatory glutamate transporter 1 (VGLUT1) were observed at the RNA and immunohistochemical levels, explaining the DTI results. These findings tie for the first time a reduction in presynaptic glutamatergic synapses with the autism/Alzheimer’s/schizophrenia-linked ADNP deficiency coupled with amelioration by NAP (CP201).
    Curcumin and o-Vanillin Exhibit Evidence of Senolytic Activity in Human IVD Cells In Vitro
    Hosni Cherif - 2019
    Curcumin and o-Vanillin cleared senescent intervertebral disc (IVD) cells and reduced the senescence-associated secretory phenotype (SASP) associated with inflammation and back pain. Cells from degenerate and non-mildly-degenerate human IVD were obtained from organ donors and from patients undergoing surgery for low back pain. Gene expression of senescence and SASP markers was evaluated by RT-qPCR in isolated cells, and protein expression of senescence, proliferation, and apoptotic markers was evaluated by immunocytochemistry (ICC). The expression levels of SASP factors were evaluated by enzyme-linked immunosorbent assay (ELISA). Matrix synthesis was verified with safranin-O staining and the Dimethyl-Methylene Blue Assay for proteoglycan content. Western blotting and ICC were used to determine the molecular pathways targeted by the drugs. We found a 40% higher level of senescent cells in degenerate compared to non-mildly-degenerate discs from unrelated individuals and a 10% higher level in degenerate compared to non-mildly-degenerate discs from the same individual. Higher levels of senescence were associated with increased SASP. Both drugs cleared senescent cells, and treatment increased the number of proliferating as well as apoptotic cells in cultures from degenerate IVDs. The expression of SASP factors was decreased, and matrix synthesis increased following treatment. These effects were mediated through the Nrf2 and NFkB pathways
    Transport and Recovery of Gilthead Seabream (Sparus aurata L.) Sedated With Clove Oil and MS-222: Effects on Stress Axis Regulation and Intermediary Metabolism
    Ismael Jerez-Cepa - 2019
    Transport processes between aquaculture facilities activate the stress response in fish. To deal with these situations, the hypothalamic-pituitary-interrenal (HPI) axis releases cortisol, leading to an increase in circulating energy resources to restore homeostasis. However, if the allostatic load generated exceeds fish tolerance limits, stress-related responses will compromise health and welfare of the animals. In this context, anesthetics have arisen as potential agents aiming to reduce negative effects of stress response. Here we assessed the effects of a sedative dose of clove oil (CO) and MS-222 on hallmarks involved in HPI axis regulation and energy management after simulated transport, and further recovery, in gilthead seabream (Sparus aurata L.) juveniles. Fish were placed in a mobile setup of water tanks where transport conditions were simulated for 6 h. Sedation doses of either CO (2.5 mg L−1) or MS-222 (5 mg L−1) were added in the water tanks. A control group without anesthetics was also included in the setup. Half of the animals (n = 12 per group) were sampled immediately after transport, while remaining animals were allowed to recover for 18 h in clean water tanks and then sampled. Our results showed that the HPI axis response was modified at peripheral level, with differences depending on the anesthetic employed. Head kidney gene-expressions related to cortisol production (star and cyp11b1) matched concomitantly with increased plasma cortisol levels immediately after transport in CO-sedated fish, but these levels remained constant in MS-222-sedated fish. Differential changes in the energy management of carbohydrates, lipids and amino acids, depending on the anesthetic employed, were also observed. The use of CO stimulated amino acids catabolism, while MS-222-sedated fish tended to consume liver glycogen and mobilize triglycerides. Further studies, including alternative doses of both anestethics, as well as the assessment of time-course HPI activation and longer recovery periods, are necessary to better understand if the use of clove oil and MS-222 is beneficial for S. aurata under these circumstances.
    Identification of traits associated with barley yield performance using contrasting nitrogen fertilizations and genotypes
    Ruben Vicente - 2019
    Much attention has been paid to understanding the traits associated with crop performance and the associated underlying physiological mechanisms, with less effort done towards combining different plant scales, levels of observation, or including hybrids of autogamous species. We aim to identify mechanisms at canopy, leaf and transcript levels contributing to crop performance under contrasting nitrogen supplies in three barley genotypes, two hybrids and one commercial line. High nitrogen fertilization did not affect photosynthetic capacity on a leaf area basis and lowered nitrogen partial factor productivity past a certain point, but increased leaf area and biomass accumulation, parameters that were closely tracked using various different high throughput remote sensing based phenotyping techniques. These aspects, together with a larger catabolism of leaf nitrogen compounds amenable to sink translocation, contributed to higher crop production. Better crop yield and growth in hybrids compared to the line was linked to a nitrogen-saving strategy in source leaves to the detriment of larger sink size, as indicated by the lower leaf nitrogen content and downregulation of nitrogen metabolism and aquaporin genes. While these changes did not reduce photosynthesis capacity on an area basis, they were related with better nitrogen use in the hybrids compared with the line.
    Bulky DNA adducts, microRNA profiles, and lipid biomarkers in Norwegian tunnel finishing workers occupationally exposed to diesel exhaust
    Iselin Rynning - 2019
    Objectives This study aimed to assess the biological impact of occupational exposure to diesel exhaust (DE) including DE particles (DEP) from heavy-duty diesel-powered equipment in Norwegian tunnel finishing workers (TFW). Methods TFW (n=69) and referents (n=69) were investigated for bulky DNA adducts (by 32P-postlabelling) and expression of microRNAs (miRNAs) (by small RNA sequencing) in peripheral blood mononuclear cells (PBMC), as well as circulating free arachidonic acid (AA) and eicosanoid profiles in plasma (by liquid chromatography–tandem mass spectrometry). Results PBMC from TFW showed significantly higher levels of DNA adducts compared with referents. Levels of DNA adducts were also related to smoking habits. Seventeen miRNAs were significantly deregulated in TFW. Several of these miRNAs are related to carcinogenesis, apoptosis and antioxidant effects. Analysis of putative miRNA-gene targets revealed deregulation of pathways associated with cancer, alterations in lipid molecules, steroid biosynthesis and cell cycle. Plasma profiles showed higher levels of free AA and 15-hydroxyeicosatetraenoic acid, and lower levels of prostaglandin D2 and 9-hydroxyoctadecadienoic acid in TFW compared with referents. Conclusion Occupational exposure to DE/DEP is associated with biological alterations in TFW potentially affecting lung homoeostasis, carcinogenesis, inflammation status and the cardiovascular system. Of particular importance is the finding that tunnel finishing work is associated with an increased level of DNA adducts formation in PBMC. This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial
    The heterogeneity and complexity of Cannabis extracts as antitumor agents
    Liran Baram - 2019
    The Cannabis plant contains over 100 phytocannabinoids and hundreds of other components. The biological effects and interplay of these Cannabis compounds are not fully understood and yet influence the plant’s therapeutic effects. Here we assessed the antitumor effects of whole Cannabis extracts, which contained significant amounts of differing phytocannabinoids, on different cancer lines from various tumor origins. We first utilized our novel electrospray ionization liquid chromatography mass spectrometry method to analyze the phytocannabinoid contents of 124 Cannabis extracts. We then monitored the effects of 12 chosen different Cannabis extracts on 12 cancer cell lines. Our results show that specific Cannabis extracts impaired the survival and proliferation of cancer cell lines as well as induced apoptosis. Our findings showed that pure (-)-Δ9-trans-tetrahydrocannabinol (Δ9-THC) did not produce the same effects on these cell lines as the whole Cannabis extracts. Furthermore, Cannabis extracts with similar amounts of Δ9-THC produced significantly different effects on the survival of specific cancer cells. In addition, we demonstrated that specific Cannabis extracts may selectively and differentially affect cancer cells and differing cancer cell lines from the same organ origin. We also found that cannabimimetic receptors were differentially expressed among various cancer cell lines and suggest that this receptor diversity may contribute to the heterogeneous effects produced by the differing Cannabis extracts on each cell line. Our overall findings indicate that the effect of a Cannabis extract on a specific cancer cell line relies on the extract’s composition as well as on certain characteristics of the targeted cells.
    The Hematopoietic Oxidase NOX2 Regulates Self-Renewal of Leukemic Stem Cells
    Biniam Adane - 2019
    The NADPH-dependent oxidase NOX2 is an important effector of immune cell function, and its activity has been linked to oncogenic signaling. Here, we describe a role for NOX2 in leukemia-initiating stem cell populations (LSCs). In a murine model of leukemia, suppression of NOX2 impaired core metabolism, attenuated disease development, and depleted functionally defined LSCs. Transcriptional analysis of purified LSCs revealed that deficiency of NOX2 collapses the self-renewal program and activates inflammatory and myeloid-differentiation-associated programs. Downstream of NOX2, we identified the forkhead transcription factor FOXC1 as a mediator of the phenotype. Notably, suppression of NOX2 or FOXC1 led to marked differentiation of leukemic blasts. In xenotransplantation models of primary human myeloid leukemia, suppression of either NOX2 or FOXC1 significantly attenuated disease development. Collectively, these findings position NOX2 as a critical regulator of malignant hematopoiesis and highlight the clinical potential of inhibiting NOX2 as a means to target LSCs.
    Multi‐omics identify xanthine as a pro‐survival metabolite for nematodes with mitochondrial dysfunction
    Anna Gioran - 2019
    Aberrant mitochondrial function contributes to the pathogenesis of various metabolic and chronic disorders. Inhibition of insulin/IGF‐1 signaling (IIS) represents a promising avenue for the treatment of mitochondrial diseases, although many of the molecular mechanisms underlying this beneficial effect remain elusive. Using an unbiased multi‐omics approach, we report here that IIS inhibition reduces protein synthesis and favors catabolism in mitochondrial deficient Caenorhabditis elegans. We unveil that the lifespan extension does not occur through the restoration of mitochondrial respiration, but as a consequence of an ATP‐saving metabolic rewiring that is associated with an evolutionarily conserved phosphoproteome landscape. Furthermore, we identify xanthine accumulation as a prominent downstream metabolic output of IIS inhibition. We provide evidence that supplementation of FDA‐approved xanthine derivatives is sufficient to promote fitness and survival of nematodes carrying mitochondrial lesions. Together, our data describe previously unknown molecular components of a metabolic network that can extend the lifespan of short‐lived mitochondrial mutant animals.
    Broad and Protective Influenza B Virus Neuraminidase Antibodies in Humans after Vaccination and their Clonal Persistence as Plasma Cells
    Michael S. Piepenbrink - 2019
    Although most seasonal inactivated influenza vaccines (IIV) contain neuraminidase (NA), the extent and mechanisms of action of protective human NAspecific humoral responses induced by vaccination are poorly resolved. Due to the propensity of influenza virus for antigenic drift and shift and its tendency to elicit predominantly strain-specific antibodies, humanity remains susceptible to waves of new strains of seasonal viruses and is at risk from viruses with pandemic potential for which limited or no immunity may exist. Here we demonstrate that the use of IIV results in increased levels of influenza B virus (IBV) NA-specific serum antibodies. Detailed analysis of the IBV NA B cell response indicates concurrent expansion of IBV NA-specific peripheral blood plasmablasts 7 days after IIV immunization which express monoclonal antibodies with broad and potent antiviral activity against both IBV Victoria and Yamagata lineages and prophylactic and therapeutic activity in mice. These IBV NA-specific B cell clonal lineages persisted in CD138 long-lived bone marrow plasma cells. These results represent the first demonstration that IIVinduced NA human antibodies can protect and treat influenza virus infection in vivo and suggest that IIV can induce a subset of IBV NA-specific B cells with broad protective potential, a feature that warrants further study for universal influenza vaccine development. IMPORTANCE Influenza virus infections continue to cause substantial morbidity and mortality despite the availability of seasonal vaccines. The extensive genetic variability in seasonal and potentially pandemic influenza strains necessitates new vaccine strategies that can induce universal protection by focusing the immune response on generating protective antibodies against conserved targets such as regions within the influenza neuraminidase protein. We have demonstrated that seasonal immunization stimulates neuraminidase-specific antibodies in humans that are broad and potent in their protection from influenza B virus when tested in mice. These antibodies further persist in the bone marrow, where they are expressed by long-lived antibody-producing cells, referred to here as plasma cells. The significance in our research is the demonstration that seasonal influenza immunization can induce a subset of neuraminidase-specific B cells with broad protective potential, a process that if further studied and enhanced could aid in the development of a universal influenza vaccine.
    Hybrid nanocarriers incorporating mechanistically distinct drugs for lymphatic CD4+ T cell activation and HIV-1 latency reversal
    Shijie Cao - 2019
    A proposed strategy to cure HIV uses latency-reversing agents (LRAs) to reactivate latent proviruses for purging HIV reservoirs. A variety of LRAs have been identified, but none has yet proven effective in reducing the reservoir size in vivo. Nanocarriers could address some major challenges by improving drug solubility and safety, providing sustained drug release, and simultaneously delivering multiple drugs to target tissues and cells. Here, we formulated hybrid nanocarriers that incorporate physicochemically diverse LRAs and target lymphatic CD4+ T cells. We identified one LRA combination that displayed synergistic latency reversal and low cytotoxicity in a cell model of HIV and in CD4+ T cells from virologically suppressed patients. Furthermore, our targeted nanocarriers selectively activated CD4+ T cells in nonhuman primate peripheral blood mononuclear cells as well as in murine lymph nodes, and substantially reduced local toxicity. This nanocarrier platform may enable new solutions for delivering anti-HIV agents for an HIV cure.
    Functional Screening Identifies MicroRNAs as Multi-Cellular Regulators of Heart Failure
    Robin Verjans - 2019
    Heart failure (HF) is the leading cause of death in the Western world. Pathophysiological processes underlying HF development, including cardiac hypertrophy, fibrosis and inflammation, are controlled by specific microRNAs (miRNAs). Whereas most studies investigate miRNA function in one particular cardiac cell type, their multicellular function is poorly investigated. The present study probed 194 miRNAs –differentially expressed in cardiac inflammatory disease – for regulating cardiomyocyte size, cardiac fibroblasts collagen content, and macrophage polarization. Of the tested miRNAs, 13%, 26%, and 41% modulated cardiomyocyte size, fibroblast collagen production, and macrophage polarization, respectively. Seventeen miRNAs affected all three cellular processes, including miRNAs with established (miR-210) and unknown roles in cardiac pathophysiology (miR-145-3p). These miRNAs with a multi-cellular function commonly target various genes. In-depth analysis in vitro of previously unstudied miRNAs revealed that the observed phenotypical alterations concurred with changes in transcript and protein levels of hypertrophy-, fibrosis- and inflammation-related genes. MiR-145-3p and miR-891a-3p were identified to regulate the fibrotic response, whereas miR-223-3p, miR-486-3p, and miR-488-5p modulated macrophage activation and polarisation. In conclusion, miRNAs are multi-cellular regulators of different cellular processes underlying cardiac disease. We identified previously undescribed roles of miRNAs in hypertrophy, fibrosis, and inflammation, and attribute new cellular effects to various well-known miRNAs.
    Krt5+/Krt15+ foregut basal progenitors give rise to cyclooxygenase-2-dependent tumours in response to gastric acid stress
    Hyeongsun Moon - 2019
    The effective prevention of tumor initiation, especially for potentially inoperable tumors, will be beneficial to obtain an overall higher quality of our health and life. Hence, thorough understanding of the pathophysiological mechanisms of early tumor formation arising from identifiable cellular origins is required to develop efficient preventative and early treatment options for each tumor type. Here, using genetically engineered mouse models, we provide preclinical experimental evidence for a long-standing open question regarding the pathophysiological potential of a microenvironmental and physiological stressor in tumor development, gastric acid-mediated regional microscopic injury in foregut squamous epithelia. This study demonstrates the association of gastric acid stress with Cyclooxygenase-2-dependent tumor formation originating from tumor-competent Krt5+/Krt15+ foregut basal progenitor cells. Our findings suggest that clinical management of microenvironmental stressor-mediated microscopic injury may be important in delaying tumor initiation from foregut basal progenitor cells expressing pre-existing tumorigenic mutation(s) and genetic alteration(s).
    A Versatile Strategy to Reduce UGA-Selenocysteine Recoding Efficiency of the Ribosome Using CRISPR-Cas9-Viral-Like-Particles Targeting Selenocysteine-tRNA[Ser]Sec Gene
    Caroline Vindry - 2019
    The translation of selenoprotein mRNAs involves a non-canonical ribosomal event in which an in-frame UGA is recoded as a selenocysteine (Sec) codon instead of being read as a stop codon. The recoding machinery is centered around two dedicated RNA components: The selenocysteine insertion sequence (SECIS) located in the 3′ UTR of the mRNA and the selenocysteine-tRNA (Sec-tRNA[Ser]Sec). This translational UGA-selenocysteine recoding event by the ribosome is a limiting stage of selenoprotein expression. Its efficiency is controlled by the SECIS, the Sec-tRNA[Ser]Sec and their interacting protein partners. In the present work, we used a recently developed CRISPR strategy based on murine leukemia virus-like particles (VLPs) loaded with Cas9-sgRNA ribonucleoproteins to inactivate the Sec-tRNA[Ser]Sec gene in human cell lines. We showed that these CRISPR-Cas9-VLPs were able to induce efficient genome-editing in Hek293, HepG2, HaCaT, HAP1, HeLa, and LNCaP cell lines and this caused a robust reduction of selenoprotein expression. The alteration of selenoprotein expression was the direct consequence of lower levels of Sec-tRNA[Ser]Sec and thus a decrease in translational recoding efficiency of the ribosome. This novel strategy opens many possibilities to study the impact of selenoprotein deficiency in hard-to-transfect cells, since these CRISPR-Cas9-VLPs have a wide tropism.
    In vitro effects of resistin on epithelial to mesenchymal transition (EMT) in MCF-7 and MDA-MB-231 breast cancer cells – qRT-PCR and westen blot analyses data
    Dimiter Avtanski - 2019
    Resistin is an adipokine produced by the white adipocytes and adipose-derived macrophages, which mediates inflammation and insulin resistance [1], [2] Huang et al., 1997 and Renehan et al., 2008 Feb. Here, we provide data on the effect of resistin on epithelial to mesenchymal transition (EMT) in breast cancer cells in vitro. As model systems, we used human MCF-7 (low-metastatic) and MDA-MB-231 (high-metastatic) breast cancer cell lines. To optimize experimental conditions, we treated the cells with various concentrations of resistin (12.5, 25 and 50 ng/ml) for different time intervals (6 and 24 hours), and measured SOCS3 mRNA expression by using qRT-PCR analysis. Further, we used qRT-PCR and Western blot analyses to measure the expression of various epithelial (E-cadherin, claudin-1) and mesenchymal (SNAIL, SLUG, ZEB1, TWIST1, fibronectin, and vimentin) markers after resistin treatment. This data article is part of a study Avtanski et al., 2019 May, where detailed interpretation and discussion.
    A truncating MEIOB mutation responsible for familial primary ovarian insufficiency abolishes its interaction with its partner SPATA22 and their recruitment to DNA double-strand breaks
    Sandrine Caburet - 2019
    Background Primary Ovarian Insufficiency (POI), a major cause of infertility, affects about 1–3% of women under forty years of age. Although there is a growing list of causal genetic alterations, POI remains mostly idiopathic. Methods We performed exome sequencing (WES) of two sisters affected with POI, one unaffected sister and their mother from a consanguineous family. We assessed the impact of the identified MEIOB variant with a minigene assay and by sequencing illegitimate transcripts from the proband's leukocytes. We studied its functional impact on the interaction between MEIOB with its partner SPATA22 and their localization to DNA double-strand breaks (DSB). Findings We identified a homozygous variant in the last base of exon 12 of MEIOB, which encodes a factor essential for meiotic recombination. This variant was predicted to strongly affect MEIOB pre-mRNA splicing. Consistently, a minigene assay showed that the variant induced exon 12 skipping, which was confirmed in vivo in the proband's leukocytes. Aberrant splicing leads to the production of a C-terminally truncated protein that cannot interact with SPATA22, abolishing their recruitment to DSBs. Interpretation This truncating MEIOB variant is expected to provoke meiotic defects and a depleted follicular stock, as in Meiob−/− mice. This is the first molecular defect reported in a meiosis-specific single-stranded DNA-binding protein (SSB) responsible for POI. We hypothesise that alterations in other SSB proteins could explain cases of syndromic or isolated ovarian insufficiency. Fund Université Paris Diderot, Fondation pour la Recherche Médicale, Fondation ARC contre le cancer, Commissariat à l'Energie Atomique and Institut Universitaire de France.
    Insights from transcriptome profiling on the non-photosynthetic and stomatal signaling response of maize carbonic anhydrase mutants to low CO2
    Allison R. Kolbe - 2019
    Carbonic anhydrase (CA) catalyzes the hydration of CO2 in the first biochemical step of C4 photosynthesis, and has been considered a potentially rate-limiting step when CO2 availability within a leaf is low. Previous work in Zea mays (maize) with a double knockout of the two highest-expressed β-CA genes, CA1 and CA2, reduced total leaf CA activity to less than 3% of wild-type. Surprisingly, this did not limit photosynthesis in maize at ambient or higher CO2concentrations. However, the ca1ca2 mutants exhibited reduced rates of photosynthesis at sub-ambient CO2, and accumulated less biomass when grown under sub-ambient CO2 (9.2 Pa). To further clarify the importance of CA for C4 photosynthesis, we assessed gene expression changes in wild-type, ca1 and ca1ca2 mutants in response to changes in pCO2 from 920 to 9.2 Pa. Results Leaf samples from each genotype were collected for RNA-seq analysis at high CO2 and at two time points after the low CO2 transition, in order to identify early and longer-term responses to CO2 deprivation. Despite the existence of multiple isoforms of CA, no other CA genes were upregulated in CA mutants. Although photosynthetic genes were downregulated in response to low CO2, differential expression was not observed between genotypes. However, multiple indicators of carbon starvation were present in the mutants, including amino acid synthesis, carbohydrate metabolism, and sugar signaling. In particular, multiple genes previously implicated in low carbon stress such as asparagine synthetase, amino acid transporters, trehalose-6-phosphate synthase, as well as many transcription factors, were strongly upregulated. Furthermore, genes in the CO2 stomatal signaling pathway were differentially expressed in the CA mutants under low CO2. Conclusions Using a transcriptomic approach, we showed that carbonic anhydrase mutants do not compensate for the lack of CA activity by upregulating other CA or photosynthetic genes, but rather experienced extreme carbon stress when grown under low CO2. Our results also support a role for CA in the CO2 stomatal signaling pathway. This study provides insight into the importance of CA for C4 photosynthesis and its role in stomatal signaling.
    High OGT activity is essential for MYC-driven proliferation of prostate cancer cells
    Harri M. Itkonen - 2019
    O-GlcNAc transferase (OGT) is overexpressed in aggressive prostate cancer. OGT modifies intra-cellular proteins via single sugar conjugation (O-GlcNAcylation) to alter their activity. We recently discovered the first fast-acting OGT inhibitor OSMI-2. Here, we probe the stability and function of the chromatin O-GlcNAc and identify transcription factors that coordinate with OGT to promote proliferation of prostate cancer cells. Methods: Chromatin immunoprecipitation (ChIP) coupled to sequencing (seq), formaldehyde-assisted isolation of regulatory elements, RNA-seq and reverse-phase protein arrays (RPPA) were used to study the importance of OGT for chromatin structure and transcription. Mass spectrometry, western blot, RT-qPCR, cell cycle analysis and viability assays were used to establish the role of OGT for MYC-related processes. Prostate cancer patient data profiled for both mRNA and protein levels were used to validate findings. Results: We show for the first time that OGT inhibition leads to a rapid loss of O-GlcNAc chromatin mark. O-GlcNAc ChIP-seq regions overlap with super-enhancers (SE) and MYC binding sites. OGT inhibition leads to down-regulation of SE-dependent genes. We establish the first O-GlcNAc chromatin consensus motif, which we use as a bait for mass spectrometry. By combining the proteomic data from oligonucleotide enrichment with O-GlcNAc and MYC ChIP-mass spectrometry, we identify host cell factor 1 (HCF-1) as an interaction partner of MYC. Inhibition of OGT disrupts this interaction and compromises MYC's ability to confer androgen-independent proliferation to prostate cancer cells. We show that OGT is required for MYC-mediated stabilization of mitotic proteins, including Cyclin B1, and/or the increased translation of their coding transcripts. This implies that increased expression of mRNA is not always required to achieve increased protein expression and confer aggressive phenotype. Indeed, high expression of Cyclin B1 protein has strong predictive value in prostate cancer patients (p=0.000014) while mRNA does not. Conclusions: OGT promotes SE-dependent gene expression. OGT activity is required for the interaction between MYC and HCF-1 and expression of MYC-regulated mitotic proteins. These features render OGT essential for the androgen-independent, MYC-driven proliferation of prostate cancer cells. Androgen-independency is the major mechanism of prostate cancer progression, and our study identifies OGT as an essential mediator in this process.
    Impaired LXRα Phosphorylation Attenuates Progression of Fatty Liver Disease
    Natalia Becares - 2019
    Non-alcoholic fatty liver disease (NAFLD) is a very common indication for liver transplantation. How fat-rich diets promote progression from fatty liver to more damaging inflammatory and fibrotic stages is poorly understood. Here, we show that disrupting phosphorylation at Ser196 (S196A) in the liver X receptor alpha (LXRα, NR1H3) retards NAFLD progression in mice on a high-fat-high-cholesterol diet. Mechanistically, this is explained by key histone acetylation (H3K27) and transcriptional changes in pro-fibrotic and pro-inflammatory genes. Furthermore, S196A-LXRα expression reveals the regulation of novel diet-specific LXRα-responsive genes, including the induction of Ces1f, implicated in the breakdown of hepatic lipids. This involves induced H3K27 acetylation and altered LXR and TBLR1 cofactor occupancy at the Ces1f gene in S196A fatty livers. Overall, impaired Ser196-LXRα phosphorylation acts as a novel nutritional molecular sensor that profoundly alters the hepatic H3K27 acetylome and transcriptome during NAFLD progression placing LXRα phosphorylation as an alternative anti-inflammatory or anti-fibrotic therapeutic target.
    Insulin Receptor deletion in S100a4-lineage cells accelerates age-related bone loss
    Valentina Studentsova - 2019
    Type I and Type II Diabetes dramatically impair skeletal health. Altered Insulin Receptor (IR) signaling is a common feature of both diseases, and insulin has potent bone anabolic functions. Several previous studies have demonstrated that loss of IR in bone cells results in disrupted bone homeostasis during early post-natal growth. Here we have deleted IR in S100a4-lineage cells (IRcKOS100a4) and assessed the effects on bone homeostasis in both young (15 weeks) and older adult (48 weeks) mice. S100a4-Cre has previously been shown to target the perichondrium during bone development, and here we show that S100a4 is expressed by adult trabecular and cortical bone cells, and that S100a4-Cre effectively targets adult bone, resulting in efficient deletion of IRβ. Deletion of IRβ in S100a4-lineage cells does not affect initial bone acquisition or homeostasis with no changes in cortical, trabecular or mechanical properties at 15-weeks of age, relative to wild type (WT) littermates. However, by 48-weeks of age, IRcKOS100a4 mice display substantial declines in trabecular bone volume, bone volume fraction and torsional rigidity, relative to age-matched WT controls. This work establishes the utility of using S100a4-cre to target bone and demonstrates that IRβ in S100a4-lineage cells is required for maintenance of bone homeostasis in adult mice.
    Standardization of Human Calcific Aortic Valve Disease in vitro Modeling Reveals Passage-Dependent Calcification
    Lang H. Lee - 2019
    Aortic valvular interstitial cells (VICs) isolated from patients undergoing valve replacement are commonly used as in vitro models of calcific aortic valve disease (CAVD). Standardization of VIC calcification, however, has not been implemented, which impairs comparison of results from different studies. We hypothesized that different culture methods impact the calcification phenotype of human VICs. We sought to identify the key parameters impacting calcification in primary human VICs to standardize CAVD in vitro research. Here we report that in calcification media containing organic phosphate, termed osteogenic media (OM), primary human VICs exhibited a passage-dependent decrease in calcification potential, which was not observed in calcification media containing inorganic phosphate, termed pro-calcifying media (PM). We used Alizarin red staining to compare the calcification potential of VICs cultured in OM and PM between the first and fourth passages after cell isolation from human CAVD tissues. Human VICs showed consistent Alizarin red stain when cultured with PM in a passage-independent manner. VICs cultured in OM did not exhibit consistent calcification potential between donors in early passages and consistently lacked positive Alizarin red stain in late passages. We performed whole cell, cytoplasmic and nuclear fractionation proteomics to identify factors regulating VIC passage-dependent calcification in OM. Proteomics cluster analysis identified tissue non-specific alkaline phosphatase (TNAP) as a regulator of passage-dependent calcification in OM. We verified an association of TNAP activity with calcification potential in VICs cultured in OM, but not in PM in which VICs calcified independent of TNAP activity. This study demonstrates that media culture conditions and cell passage impact the calcification potential of primary human VICs and should be taken into consideration in cell culture models of CAVD. Our results help standardize CAVD modeling as part of a greater effort to identify disease driving mechanisms and therapeutics for this unmet medical need.
    Development and validation of an in vitro 3D model of NASH with severe fibrotic phenotype
    Sumanta Mukherjee - 2019
    Nonalcoholic steatohepatitis represents a significant and rapidly growing unmet medical need. The development of novel therapies has been hindered in part, by the limitations of existing preclinical models. There is a strong need for physiologically relevant in vivo and in vitro liver fibrosis models that are characterized by better translational predictability. In this study, we used the InSphero 3D InSightTM three-dimensional (3D) human liver microtissue (3D-hLMT) system prepared by co-culturing primary human hepatocytes with hepatic stellate cells, Kupffer cells and endothelial cells to develop a model of NASH with a severe fibrotic phenotype. In our model, palmitic acid (PA) induced a robust proinflammatory and profibrogenic phenotype in the 3D-hLMT. PA significantly increased several markers of the inflammatory and profibrotic process including gene expression of collagens, α-sma, tissue inhibitor of matrix metalloprotease 1 (timp1) and the stellate cell activation marker pdgfrβ as well as secreted CXCL8 (IL8) levels. We also observed TGFβ pathway activation, increase in active collagen synthesis and significant overall increase in tissue damage in the 3D-hLMTs. Immunohistochemistry analysis demonstrated the upregulation of collagen, cleaved caspase 3 as well as of the PDGFRβ protein. We further validated the model using a phase 3 clinical compound, GS-4997, an apoptosis signal-regulating kinase 1 (ASK-1) inhibitor and showed that GS-4997 significantly decreased PA induced profibrotic and proinflammatory response in the 3D-hLMTs with decreases in apoptosis and stellate cell activation in the microtissues. Taken together we have established and validated an in vitro 3D-hLMT NASH model with severe fibrotic phenotype that can be a powerful tool to investigate experimental compounds for the treatment of NASH.
    Dysregulation of Circadian Rhythm Gene Expression in Cystic Fibrosis Mice
    Eric Barbato - 2019
    Cystic fibrosis (CF) is autosomal recessive disease that affects multiple body systems. CF patients often experience sleep disturbances, altered sleep patterns, and sleep apnea. Sleep in mammals is controlled in part by circadian clock genes, including Clock, Bmal1, Period1, Period2, Cryptochrome1, and Cryptochrome2. The purpose of this study was to gain a better understanding of the biological underpinnings of disordered sleep experienced in CF. To accomplish this, we evaluated circadian clock gene expression profiles in CF and wildtype mice, divided into two subgroups each based on sleep condition. One subgroup of each genotype was permitted to maintain their sleep-wake cycle while the other was deprived of sleep for six hours prior to sacrifice. Brain, skeletal muscle, jejunum, colon, lung and adipose tissues were collected from each mouse. Quantitative polymerase chain reaction (PCR) was used to quantify expression of Clock, Bmal1, Period1, Period2, Cryptochrome1 and Cryptochrome2, and expression levels were compared between study groups. Our comparisons showed distinct differences between the CF groups and the wildtype groups under both sleep conditions. Additionally, we found the CF mice that had been sleep deprived had severely dysregulated expression of all measured genes in the lung apart from Cry1. Our findings suggest that (1) disordered sleep in CF may be caused by circadian system dysregulation and (2) the loss of the cystic fibrosis transmembrane conductance regulator (CFTR) is a causative factor in the dysregulated circadian clock gene expression profiles of CF mice.
    Isolation and profiling of plasma microRNAs: Biomarkers for asthma and allergic rhinitis
    Ronaldo P. Panganiban - 2019
    Chronic inflammatory diseases can be particularly challenging to diagnose and characterize, as inflammatory changes in tissue may not be present in blood. There is a crucial need to develop non-invasive biomarkers that would be useful in diagnosing disease and selecting medical therapies. For example, there are no blood tests to diagnose asthma, a common inflammatory lung disease. MicroRNA (miRNA) expression profiling in blood is emerging as a potentially sensitive and useful biomarker of many diseases. In particular, we have characterized a cost-effective PCR-based array technology to measure and profile circulating miRNAs in the plasma of patients with allergic rhinitis and asthma. Here, we describe the methods to isolate, quantify, and analyze miRNAs in the plasma of human subjects as well as ways to determine their diagnostic utility.
    Glucocorticoid-driven transcriptomes in human airway epithelial cells: commonalities, differences and functional insight from cell lines and primary cells
    Mahmoud M. Mostafa - 2019
    Background Glucocorticoids act on the glucocorticoid receptor (GR; NR3C1) to resolve inflammation and, as inhaled corticosteroids (ICS), are the cornerstone of treatment for asthma. However, reduced efficacy in severe disease or exacerbations indicates a need to improve ICS actions. Methods Glucocorticoid-driven transcriptomes were compared using PrimeView microarrays between primary human bronchial epithelial (HBE) cells and the model cell lines, pulmonary type II A549 and bronchial epithelial BEAS-2B cells. Results In BEAS-2B cells, budesonide induced (≥2-fold, P ≤ 0.05) or, in a more delayed fashion, repressed (≤0.5-fold, P ≤ 0.05) the expression of 63, 133, 240, and 257 or 15, 56, 236, and 344 mRNAs at 1, 2, 6, and 18 h, respectively. Within the early-induced mRNAs were multiple transcriptional activators and repressors, thereby providing mechanisms for the subsequent modulation of gene expression. Using the above criteria, 17 (BCL6, BIRC3, CEBPD, ERRFI1, FBXL16, FKBP5, GADD45B, IRS2, KLF9, PDK4, PER1, RGCC, RGS2, SEC14L2, SLC16A12, TFCP2L1, TSC22D3) induced and 8 (ARL4C, FLRT2, IER3, IL11, PLAUR, SEMA3A, SLC4A7, SOX9) repressed mRNAs were common between A549, BEAS-2B and HBE cells at 6 h. As absolute gene expression change showed greater commonality, lowering the cut-off (≥1.25 or ≤ 0.8-fold) within these groups produced 93 induced and 82 repressed genes in common. Since large changes in few mRNAs and/or small changes in many mRNAs may drive function, gene ontology (GO)/pathway analyses were performed using both stringency criteria. Budesonide-induced genes showed GO term enrichment for positive and negative regulation of transcription, signaling, proliferation, apoptosis, and movement, as well as FOXO and PI3K-Akt signaling pathways. Repressed genes were enriched for inflammatory signaling pathways (TNF, NF-κB) and GO terms for cytokine activity, chemotaxis and cell signaling. Reduced growth factor expression and effects on proliferation and apoptosis were highlighted. Conclusions While glucocorticoids repress mRNAs associated with inflammation, prior induction of transcriptional activators and repressors may explain longer-term responses to these agents. Furthermore, positive and negative effects on signaling, proliferation, migration and apoptosis were revealed. Since many such gene expression changes occurred in human airways post-ICS inhalation, the effects observed in cell lines and primary HBE cells in vitro may be relevant to ICS in vivo.
    CDK9 Inhibition Induces a Metabolic Switch that Renders Prostate Cancer Cells Dependent on Fatty Acid Oxidation
    Harri M. Itkonen - 2019
    Cyclin-dependent kinase 9 (CDK9), a key regulator of RNA-polymerase II, is a candidate drug target for cancers driven by transcriptional deregulation. Here we report a multi-omics-profiling of prostate cancer cell responses to CDK9 inhibition to identify synthetic lethal interactions. These interactions were validated using live-cell imaging, mitochondrial flux-, viability- and cell death activation assays. We show that CDK9 inhibition induces acute metabolic stress in prostate cancer cells. This is manifested by a drastic down-regulation of mitochondrial oxidative phosphorylation, ATP depletion and induction of a rapid and sustained phosphorylation of AMP-activated protein kinase (AMPK), the key sensor of cellular energy homeostasis. We used metabolomics to demonstrate that inhibition of CDK9 leads to accumulation of acyl-carnitines, metabolic intermediates in fatty acid oxidation (FAO). Acyl-carnitines are produced by carnitine palmitoyltransferase enzymes 1 and 2 (CPT), and we used both genetic and pharmacological tools to show that inhibition of CPT-activity is synthetically lethal with CDK9 inhibition. To our knowledge this is the first report to show that CDK9 inhibition dramatically alters cancer cell metabolism.
    MicroRNA‑223 attenuates LPS‑induced inflammation in an acute lung injury model via the NLRP3 inflammasome and TLR4/NF‑κB signaling pathway via RHOB
    Yurong Yan - 2019
    Acute lung injury (ALI) and the more severe acute respiratory distress syndrome are common and complex inflammatory lung diseases. MicroRNAs (miRs) have emerged as novel gene regulatory molecules, serving a crucial role in a variety of complex diseases, including ALI. In the present study, the anti‑inflammatory action of miR‑223 on inflammation in ALI was demonstrated and the possible mechanism was further examined. In lipopolysaccharide‑induced ALI, the expression of miR‑223 was reduced compared with that in the control normal group. An in vitro model was used to analyze the effect of miR‑223 downregulation on an ALI model, which increased inflammation, and induced the activation of the NACHT, LRR and PYD domains‑containing protein 3 (NLRP3) inflammasome and Toll‑like receptor 4 (TLR4)/nuclear factor (NF)‑κB signaling pathway via rho‑related GTP‑binding protein RhoB (RHOB). In addition, the overexpression of miR‑223 reduced inflammation and suppressed the NLRP3 inflammasome and TLR4/NF‑κB signaling pathway via RHOB in the in vitro model. Furthermore, TLR4 inhibitor or NLRP3 inhibitor reduced the pro‑inflammatory effect of miR‑223 downregulation in ALI. In conclusion, the results of the present study indicated that miR‑223 functioned as a biological indicator by regulating inflammation in ALI, and may represent a novel potential therapeutic target and prognostic marker of ALI.
    Reduced expression of the IL7Ra signaling pathway in Neuromyelitis optica
    Livnat Brill - 2018
    Neuromyelitis optica (NMO) is a chronic inflammatory demyelinating autoimmune disease of the central nervous system that most commonly affects the optic nerves and spinal cord. To characterize the immunological pathways involved in NMO, whole blood RNA expression array was performed using Nanostring nCounter technology. Two major clusters of genes were found associated with NMO: T cell-associated genes and the TNF/NF-kB signaling pathway. Analysis of the genes within the first cluster confirmed significantly reduced expression of IL7Ra (CD127) in the peripheral blood of NMO patients vs that in healthy controls. IL7Ra upstream transcription factors and its downstream survival signaling pathway were also markedly reduced. In line with the essential role of IL7Ra in T cell maturation and survival, a significantly lower number of naïve T cells, and reduced T cell survival signaling mediated by increased BID (BH3-interacting domain death agonist) expression and increased apoptosis was observed. Cumulatively, these findings indicate that the IL7Ra signaling pathway may play a role in the autoimmune process in NMO.
    Small adipose stores in cystic fibrosis mice are characterized by reduced cell volume, not cell number
    Ilya R. Bederman - 2018
    Cystic fibrosis (CF) is a lethal genetic disorder that affects many organ systems of the body, including various endocrine and exocrine tissues. Health and survival positively associate with body mass and as a consequence, CF clinical care includes high-fat, high-calorie diets to maintain and increase adipose tissue stores. Such strategies have been implemented without a clear understanding of the cause and effect relationship between body mass and patients' health. Here, we use CF mouse models, which display small adipose stores, to begin examining body fat as a prelude into mechanistic studies of low body growth in CF, so that optimal therapeutic strategies can be developed. We reasoned that low adiposity must result from reduced number and/or volume of adipocytes. To determine relative contribution of either mechanism, we quantified volume of intraperitoneal and subcutaneous adipocytes. We found smaller, but not fewer, adipocytes in CF compared to wildtype (WT) animals. Specifically, intraperitoneal CF adipocytes were half the volume of WT cells, whereas subcutaneous cells were less affected by the Cftr genotype. No differences were found in cell types between CF and WT adipose tissues. Adipose tissue CFTR mRNA was detected and we found greater CFTR expression in intraperitoneal depots as compared with subcutaneous samples. RNA sequencing revealed that CF adipose tissue exhibited lower expression of several key genes of adipocyte function (Lep, Pck1, Fas, Jun), consistent with low triglyceride storage. The data indicate that CF adipocytes contain less triglycerides than WT cells and a role for CFTR in these cells is proposed.
    CETP Inhibition Improves HDL Function but Leads to Fatty Liver and Insulin Resistance in CETP-Expressing Transgenic Mice on a High-Fat Diet
    Lin Zhu - 2018
    In clinical trials inhibition of cholesteryl ester transfer protein (CETP) raises HDL cholesterol levels but doesn’t robustly improve cardiovascular outcomes. About 2/3 of trial participants were obese. Lower plasma CETP activity is associated with increased cardiovascular risk in human studies, and protective aspects of CETP have been observed in mice fed a high-fat diet (HFD) with regard to metabolic outcomes. To define if CETP inhibition has different effects depending on the presence of obesity, we performed short-term anacetrapib treatment in chow- and HFD-fed CETP-transgenic mice. Anacetrapib raised HDL cholesterol and improved aspects of HDL functionality including reverse cholesterol transport and HDL’s anti-oxidative capacity in HFD-fed mice better than in chow-fed mice. Anacetrapib worsened the anti-inflammatory capacity of HDL in HFD-fed mice. The HDL proteome was markedly different with anacetrapib treatment in HFD-fed vs. chow-fed mice. Despite benefits on HDL, anacetrapib led to liver triglyceride accumulation and insulin resistance in HFD-fed mice. Overall, our results support a physiologic importance of CETP in protecting from fatty liver, and demonstrate a context-selectivity of CETP inhibition that might be important in obese subjects.
    Induction of early growth response gene 1 (EGR1) by endoplasmic reticulum stress is mediated by the extracellular regulated kinase (ERK) arm of the MAPK pathways
    Jixiu Shan - 2018
    Endoplasmic reticulum (ER) stress activates three principal signaling pathways, collectively known as the unfolded protein response, leading to translational and transcriptional control mechanisms that dictate the cell's response as adaptive or apoptotic. The present study illustrates that for HepG2 human hepatocellular carcinoma cells the signaling pathways triggered by ER stress extend beyond the three principal pathways to include mitogen-activated protein kinase (MAPK) signaling, leading to activation of transcription from the early growth response 1 (EGR1) gene. Analysis provided evidence for a SRC-RAS-RAF-MEK-ERK cascade mechanism that leads to enhanced phosphorylation of the transcription factor ELK1. ELK1 and serum response factor (SRF) are constitutively bound to the EGR1 promoter and are phosphorylated by nuclear localized ERK. The promoter abundance of both phospho-SRF and phopsho-ELK1 was increased by ER stress, but the SRF phosphorylation was transient. Knockdown of ELK1 had little effect on the basal EGR1 mRNA content, but completely blocked the increase in response to ER stress. Conversely, knockdown of SRF suppressed basal EGR1 mRNA content, but had only a small effect on the induction by ER stress. This research highlights the importance of MAPK signaling in response to ER stress and identifies ELK1 as a transcriptional mediator and the EGR1 gene as a target.
    Treatment with Lecinoxoids Attenuates Focal and Segmental Glomerulosclerosis Development in Nephrectomized Rats
    Niva Yacov - 2018
    Focal segmental glomerulosclerosis (FSGS) is a scarring process associated with chronic low-grade inflammation ascribed to toll-like receptor (TLR) activation and monocyte migration. We developed synthetic, small-molecule lecinoxoids, VB-201 and VB-703, that differentially inhibit TLR-2- and TLR-4-mediated activation and monocyte migration. The efficacy of anti-inflammatory lecinoxoid treatment on FSGS development was explored using a 5/6 nephrectomy rat model. Five-sixths nephrectomized rats were treated with lecinoxoids VB-201, VB-703 or PBS, for 7 weeks. Upon sacrifice, albumin/creatinine ratio, glomerulosclerosis, fibrosis-related gene expression, and the number of glomerular and interstitial monocyte were evaluated. Treatment of nephrectomized rats with lecinoxoids ameliorated glomerulosclerosis. The percent of damaged glomeruli, glomerular sclerosis and glomeruli fibrotic score were significantly reduced following VB-201 and VB-703 treatment. VB-703 attenuated the expression of fibrosis hallmark genes collagen, fibronectin (FN), and transforming growth factor β (TGF-β) in kidneys and improved albumin/creatinine ratio with higher efficacy than did VB-201, but only VB-201 significantly reduced the number of glomerular and interstitial monocytes. These results indicate that treatment with TLR-2, and more prominently, TLR-4 antagonizing lecinoxioids, is sufficient to significantly inhibit FSGS. Moreover, inhibiting monocyte migration can also contribute to treatment of FSGS. Our data demonstrate that targeting TLR2-4 and/or monocyte migration, directly affects the priming phase of fibrosis and may consequently perturb disease parthogenesis. This article is protected by copyright. All rights reserved.
    Myeloperoxidase deficiency attenuates systemic and dietary Iron-induced adverse effects
    Xia Xiao - 2018
    Iron deficiency is routinely treated with oral or systemic iron supplements, which is highly reactive and could induce oxidative stress via augmenting the activity of proinflammatory enzyme, myeloperoxidase (MPO). To investigate the extent to which MPO is involved in iron-induced toxicity, acute (24 h) iron toxicity was induced by intraperitoneal administration of FeSO4 (25 mg/kg body weight) to MPO deficient (MpoKO) mice and their WT littermates. Acute iron-toxicity was also assessed in WT mice pretreated with a MPO inhibitor, 4-aminobenzoic acid hydrazide (ABAH). Systemic iron administration upregulated circulating MPO, neutrophil elastase and elevated systemic inflammatory and organ damage markers in WT mice. However, genetic deletion of MPO or its inhibition significantly reduced iron-induced organ damage and systemic inflammatory responses. In contrast to the acute model, 8 weeks of 2% carbonyl iron diet feeding to WT mice did not change the levels of circulating MPO and neutrophil elastase but promoted their accumulation in the liver. Even though both MpoKO and WT mice displayed similar levels of diet-induced hyperferremia, MpoKO mice showed significantly reduced inflammatory response and oxidative stress than the WT mice. In addition, WT bone marrow-derived neutrophils (BMDN) generated more reactive oxygen species than MPO deficient BMDN upon iron stimulation. Altogether, genetic deficiency or pharmacologic inhibition of MPO substantially attenuated acute and chronic iron-induced toxicity. Our results suggest that targeting MPO during iron supplementation is a promising approach to reduce iron-induced toxicity/side effects in vulnerable population.
    Humoral and cellular immune response of European sea bass (Dicentrarchus labrax(vaccinated with heat-killed Mycobacterium marinum (iipA::kan mutant)
    N. Ziklo - 2018
    No vaccine is yet commercially available against Mycobacterium marinum, the etiological agent of “fish tuberculosis”. The mycobacterial gene responsible for invasion and intracellular persistence, iipA, is known to moderate M. marinum pathology in zebrafish. Two doses of heat-killed, wild type virulent M. marinum and two doses of a heat-killed avirulent M. marinum iipA::kan mutant strain were used in parallel to vaccinate sea bass (Dicentrarchus labrax). The fish were then challenged with live virulent M. marinum and the pathogenesis of the infection was monitored. High specific IgM response and increase in cytokine TNF-α mRNA expression levels were observed in all vaccinated fish. One month post-challenge, TNF-α expression levels increased in spleen tissues of fish vaccinated with the virulent type and of unvaccinated fish, whereas in the head-kidney expression up-regulated only in unvaccinated fish. The expression then decreased and two months post-challenge appeared similar in all vaccination types. Highest survival rate (75%) was recorded in the group of fish vaccinated with high dose of iipA::kan avirulent mutant. The iipA::kan mutant induced a strong immune response accompanied by only modest tissue disruption. Coupled with an effective program of booster treatments, the iipA::kan mutant vaccine may be developed into a powerful preventive measure against fish mycobacteriosis. This article is protected by copyright. All rights reserved.
    Resident brain neural precursor cells develop age-dependent loss of therapeutic functions in Alzheimer's mice
    Nina Fainstein - 2018
    There is vast knowledge on pathogenic mechanisms in Alzheimer's disease, but very little on means by which the brain protects itself from disease. A major candidate in providing neuroprotection is the resident brain neural stem/precursor cell (NPC) pool. Transplanted NPCs possess powerful immune-modulatory and trophic properties in vivo and in vitro, underscoring the question whether resident brain NPCs have any role in regulating disease pathology in Alzheimer's disease, and particularly whether they fail to protect the brain from degeneration. To evaluate brain NPC function in relation to disease pathology, we first characterized the pathological properties of 5xFAD transgenic mouse model of Alzheimer's disease at different ages. We found that age seven months is a critical time point of heavy amyloid deposition and gliosis but prior to neurodegeneration and a normal basal rate of NPC turnover in the subventricular zone (SVZ) of 5xFAD mice as compared to wild type mice. Analysis of NPC functional properties showed that despite preserved rate of turnover, there was substantial SVZ NPC dysfunction as indicated by both ex vivo and in vivo assays. Freshly isolated NPCs from seven months old 5xFAD mice exhibited reduced expansion rate, and diminished immune-modulatory and trophic properties. Moreover, there was slowed recovery of SVZ NPCs after Cytosine-arabinoside insult and markedly reduced migratory response following a Lysolecithine-induced lesion in the Corpus-Callosum in vivo. Importantly, these functions were fully preserved in two-months old 5xFAD mice, a time-point prior to Alzheimer's-specific pathological changes. There was reduced expression of key genes involved in NPC proliferative and migratory response in NPCs derived from seven months old 5xFAD mice. The dysfunctional properties and down-regulation of gene expression were reversible in NPCs derived from seven-months old 5xFAD mice following in-vitro expansion and were reproduced in wild type NPC by addition of amyloid beta peptide. Thus, there is age-dependent acquired NPC dysfunction, with loss of immune-modulatory and neurotrophic properties, which is induced by the pathological Alzheimer's brain environment at a critical time point prior to neurodegeneration. We suggest that failure of resident NPC to provide tissue support may be involved in promoting neurodegeneration.
    CSDC2, a cold shock domain RNA-binding protein in decidualization
    Griselda Vallejo - 2018
    RNA-binding proteins (RBPs) have been described for cancer cell progression and differentiation, although there is still much to learn about their mechanisms. Here, using in vivo decidualization as a model, we describe the role of RBP cold shock domain containing C2 (CSDC2) in the endometrium. Csdc2 messenger RNA expression was differentially regulated depending on time and areas of decidua development, with the most variation in antimesometrium (AM) and, to a lesser degree, in the junctional zone (JZ). Immunohistochemistry of CSDC2 showed a preferentially cytoplasmic localization at AM and JZ, and nuclear localization in underneath myometrium and mesometrium (M). Cytoplasmic localization coincided with differentiated, DESMIN-marked areas, while nuclear localization coincides with proliferative zones. Uterine suppression of CSDC2 through intrauterine-injected-specific small interfering RNA (siRNA) led to abnormal decidualization in early pregnancy, with more extended antimesometrial area and with poor M development if compared with control siRNA-injected animals. These results suggest that CSDC2 could be a regulator during decidua development.
    Deletion of Axin1 in condylar chondrocytes leads to osteoarthritis-like phenotype in temporomandibular joint via activation of β-catenin and FGF signaling
    Yachuan Zhou - 2018
    Osteoarthritis (OA) in the temporomandibular joint (TMJ) is a degenerative disease in the adult, which is characterized by the pathological degeneration of condylar cartilage. Axin1 plays a critical role in the regulation of cartilage development and homeostasis. To determine the role of Axin1 in TMJ tissue at the adult stage, we generated Axin1Agc1ER mice, in which Axin1 was deleted in aggrecan-expressing chondrocytes at 2 months of age. Histology, histomorphometry, and immunostaining analyses were performed using TMJ tissues harvested from 4- and 6-month-old mice after tamoxifen administration. Total RNA isolated from TMJ cartilage of 6-month-old mice was used for gene expression analysis. Progressive OA-like degeneration was observed in condylar cartilage in Axin1 knockout (KO) mice with loss of surface continuity and the formation of vertical fissures. In addition, reduced alcian blue staining in condylar cartilage was also found in Axin1 KO mice. Immunostaining and reverse transcription quantitative polymerase chain reaction (qRT-PCR) assays revealed disturbed homeostasis in condylar cartilage with increased expressions of MMP13 and Adamts5 and decreased lubricin expression in Axin1-deficient chondrocytes. Less proliferative cells with increased hypertrophic and apoptotic activities were presented in the condylar cartilage of Axin1Agc1ER KO mice. As a scaffolding protein, the deletion of Axin1 stimulated not only the β-catenin but also the fibroblast growth factor (FGF) signaling via extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) activation. The qRT-PCR results showed an increased expression of Fgfr1 in Axin1 KO cartilage. Overall, the deletion of Axin1 in condylar chondrocytes altered the β-catenin and FGF/ERK1/2 signaling pathways, thus cooperatively contribute to the cartilage degeneration.
    Assessment of Sep1virus interaction with stationary cultures by transcriptional and flow cytometry studies
    Luís D. R. Melo - 2018
    The majority of phage infection studies are performed in bacteria that are growing exponentially, although in nature, phages usually interact also with non-replicating cells. These stationary-phase cells differ from exponential cells morphologically, physiologically and metabolically. The interaction of a Sep1virus with Staphylococcus epidermidis stationary and exponential phase cells was explored. Phage SEP1 efficiently infected both cell culture states, without the addition of any fresh nutrients to stationary cultures. Phage-host interactions, analysed by flow cytometry, showed stationary-phase cells response to phage immediately after SEP1 addition. Quantitative PCR experiments corroborate that phage genes are expressed within 5 min of contact with stationary phase cells. The increase of host RNA polymerase transcripts in stationary cells, suggests that SEP1 infection leads to upregulation of host machinery fundamental for completion of its lytic life cycle. SEP1 infection and replication process highlights its potential clinical interest targeting stationary phase cells.
    Lactobacillus casei BL23 modulates the innate immune response in Staphylococcus aureus-stimulated bovine mammary epithelial cells
    R.f.s. Souza - 2018
    Probiotics have been adopted to treat and prevent various diseases in humans and animals. They were notably shown to be a promising alternative to prevent mastitis in dairy cattle. This inflammation of the mammary gland is generally of infectious origin and generates extensive economic losses worldwide. In a previous study, we found that Lactobacillus casei BL23 was able to inhibit the internalisation of Staphylococcus aureus, one of the major pathogens involved in mastitis, into bovine mammary epithelial cells (bMEC). In this study, we further explored the capacity of this strain to modulate the innate immune response of bovine mammary epithelial cells during S. aureus infection. L. casei BL23 was able to decrease the expression of several pro-inflammatory cytokines, including interleukins 6, 8, 1α and 1β and tumour necrosis factor alpha, in S. aureus-stimulated bMEC, 8 h post-infection. On the other hand, L. casei did not impair the induction of defensins, such as lingual antimicrobial peptide and defensin β1 in the presence of S. aureus, and even slightly increased the induction of tracheal antimicrobial peptide during S. aureus infection. Finally, this strain did not alter the expression of the pattern recognition receptor nucleotide-binding oligomerisation domain proteins (NOD2). This study demonstrates that L. casei BL23 displayed anti-inflammatory properties on S. aureus-stimulated bMEC. These results open the way to further characterisation of the BL23 probiotic potential in a bovine mammary gland context and to a better understanding of how all these beneficial properties combine in vivo to combat mastitis pathogens.
    The von Hippel Lindau tumour suppressor gene is a novel target of E2F4-mediated transcriptional repression in preeclampsia
    Sruthi Alahari - 2018
    The von Hippel Lindau tumour suppressor (VHL) protein is essential for proper placental development and is downregulated in preeclampsia (PE), a devastating disorder of pregnancy typified by chronic hypoxia. To date, knowledge on VHL genetic and epigenetic regulation is restricted to inactivating mutations and loss-of-heterozygosity in renal cell carcinomas. Herein, we sought to examine whether VHL DNA is subject to differential methylation, and if so, whether it is altered in early-onset PE (E-PE). Sodium bisulfite modification and methylation-specific PCR analysis revealed that VHL is subject to extensive methylation in a CpG-rich region within its promoter in the human placenta. Notably, we detected significant differences in methylation in E-PE placentae relative to normotensive age-matched controls at key transcription factor binding sites, including that of the transcriptional repressor E2F4. Treatment of JEG3 cells with 5-Aza-2′-deoxycytidine, revealed that loss of DNA methylation promoted VHL transcription by attenuating VHL association with E2F4. RNAi knockdown of E2F4 in vitro confirmed its function on VHL repression. Exposure of JEG3 cells to transforming growth factor beta (TGFβ) downregulated VHL mRNA. In line with elevated levels of TGFβ3 in E-PE, chromatin immunoprecipitation assays revealed that E2F4-VHL association was enhanced upon TGFβ3 treatment, indicative of VHL transcriptional inhibition. In line with decreased VHL expression in E-PE, augmented E2F4-VHL association was also observed in E-PE placental tissue relative to controls. In conclusion, we demonstrate for the first time that hypomethylation of VHL DNA at a key transcription factor binding site has significant consequences for its transcriptional repression in early-onset preeclampsia.
    A STAT4 variant increases liver fibrosis risk in Caucasian patients with chronic hepatitis B
    R. El Sharkawy - 2018
    Background Host genetic modifiers of the natural history of chronic hepatitis B (CHB) remain poorly understood. Recently, a genome-wide association study (GWAS)-identified polymorphism in the STAT4 gene that contributes to the risk for hepatocellular carcinoma (HCC) was shown to be associated with the full spectrum of hepatitis B virus (HBV) outcomes in Asian patients. However, the functional mechanisms for this effect are unknown and the role of the variant in modulating HBV disease in Caucasians has not been investigated. Aims To determine whether STAT4 genetic variation is associated with liver injury in Caucasian patients with CHB and to investigate potential mechanisms mediating this effect. Methods STAT4 rs7574865 was genotyped in 1085 subjects (830 with CHB and 255 healthy controls). STAT4 expression in liver, PBMCs and NK cells, STAT4 phosphorylation and secretion of interferon-gamma (IFN-γ) according to STAT4 genetic variation was examined. Results STAT4 rs7574865 genotype was independently associated with hepatic inflammation (OR: 1.42, 95% CI: 1.07-2.06, P = 0.02) and advanced fibrosis (OR: 1.83, 95% CI: 1.19-2.83, P = 0.006). The minor allele frequency of rs7574865 was significantly lower than that in healthy controls. rs7574865 GG risk carriers expressed lower levels of STAT4 in liver, PBMCs and in NK cells, while NK cells from patients with the risk genotype had impaired STAT4 phosphorylation following stimulation with IL-12/IL-18 and a reduction in secretion of IFN-γ. Conclusion Genetic susceptibility to HBV persistence, hepatic inflammation and fibrosis in Caucasians associates with STAT4 rs7574865 variant. Downstream effects on NK cell function through STAT4 phosphorylation-dependent IFN-γ production likely contribute to these effects.
    Development of Escherichia coli based gene expression profiling of sewage sludge leachates
    Manish Goswami - 2018
    Aims The impact of municipal waste on pathogenic microorganisms released into the environment is a public health concern. The present study aims to evaluate the effects of sewage sludge and antibiotic contaminants on stress response, virulence and antibiotic resistance in a pathogenic Escherichia coli. Methods and Results The effects of sewage sludge leachates on uropathogenic E. coli CFT073 were determined by monitoring the expression of 45 genes associated with antibiotic/metal resistance, stress response and virulence using RT-qPCR. The E. coli gene expression was validated using sub-inhibitory concentrations of tetracycline and ciprofloxacin. E. coli exposed to sewage sludge or sewage sludge-fly ash leachates altered the expression of 5 antibiotic and metal resistance, 3 stress response and 2 virulence associated genes. When antibiotics were combined with sludge or sludge-fly ash the antibiotic-associated gene expression was altered. Conclusions E. coli treated with two sludge leachates had distinct gene expression patterns that were altered when the sludge leachates were combined with tetracycline, although to a lesser extent with ciprofloxacin. Significance and Impact of Study The E. coli multigene expression analysis is a potential new tool for assessing the effects of pollutants on pathogenic microbes in environmental waters for improved risk assessment. This article is protected by copyright. All rights reserved.
    High MUC2 Mucin Biosynthesis in Goblet Cells Impedes Restitution and Wound Healing by Elevating Endoplasmic Reticulum Stress and Altered Production of Growth Factors
    Adelaide Tawiah - 2018
    Intestinal epithelial cell wound healing involves cell migration, proliferation, and differentiation. Although numerous studies have analyzed the migration of absorptive epithelial cells during wound healing, it remains unclear how goblet cells restitute and how MUC2 mucin production affects this process. In this study, we examined the role of high MUC2 production in goblet cell migration during wound healing and demonstrated that during high MUC2 output, goblet cells migrated slower because of impaired production of wound healing factors and endoplasmic reticulum (ER) stress. Two goblet cell lines, HT29-H and HT29-L, that produced high and low MUC2 mucin, respectively, were used. HT29-L healed wounds faster than HT29-H cells by producing significantly higher amounts of fibroblast growth factor (FGF) 1, FGF2, vascular endothelial growth factor-C, and matrix metallopeptidase 1. Predictably, treatment of HT29-H cells with recombinant FGF2 significantly enhanced migration and wound healing. High MUC2 biosynthesis in HT29-H cells induced ER stress and delayed migration that was abrogated by inhibiting ER stress with tauroursodeoxycholic acid and IL-22. FGF2- and IL-22–induced wound repair was dependent on STAT1 and STAT3 signaling. During wound healing after dextran sulfate sodium–induced colitis, restitution of Math1M1GFP+ goblet cells occurred earlier in the proximal colon, followed by the mid and then distal colon, where ulceration was severe. We conclude that high MUC2 output during colitis impairs goblet cell migration and wound healing by reducing production of growth factors critical in wound repair.
    Roflumilast promotes memory recovery and attenuates white matter injury in aged rats subjected to chronic cerebral hypoperfusion
    Amanda Santiago - 2018
    Chronic cerebral hypoperfusion (CCH) has been associated with aging-related vascular dementia, including Alzheimer's disease. It can be induced by the four-vessel occlusion/internal carotid artery (4VO/ICA) model in aged rats, resulting in persistent memory deficits, white matter injury, and significant neuronal loss in the hippocampus and cerebral cortex. The phosphodiesterase type 4 inhibitor (PDE4-I) roflumilast has been reported to have pro-cognitive effects in several behavioral paradigms. The present study evaluated the effects of repeated roflumilast treatment in aged rats that were subjected to CCH. After surgery, roflumilast (0.003 and 0.01 mg/kg) was administered intraperitoneally once per day for 29 days. Memory performance was assessed in the aversive radial maze (AvRM) 7, 14, and 21 days after CCH. The effects of roflumilast on hippocampal neurodegeneration and white matter injury were investigated using Nissl and Kluver-Barrera staining, respectively. Western blot and RT-qPCR were used to explore microglial polarization using M1 (Iba-1 and iNOS) and M2 (Arginase-1) markers. Chronic cerebral hypoperfusion caused persistent memory deficits, hippocampal neurodegeneration, and vacuolization and fiber disarrangement in white matter. Repeated roflumilast treatment restored CCH-induced cognitive impairments in aged rats but in the absence of the rescue of hippocampal neurons. Attenuation of white matter injury was detected in the optic tract in aged CCH rats that were treated with roflumilast. In vitro, roflumilast increased Arg-1 gene expression in myelin-laden primary microglia. The present data suggest that roflumilast might be useful for the treatment of cognitive sequelae associated with CCH.
    Elevation of the TP53 isoform Δ133p53β in glioblastomas: an alternative to mutant p53 in promoting tumour development
    Marina Kazantseva - 2018
    As tumour protein 53 (p53) isoforms have tumour promoting, migration and inflammatory properties, this study investigated whether p53 isoforms contributed to glioblastoma progression. The expression levels of full-length TP53α (TAp53α) and six TP53 isoforms were quantitated by RT-qPCR in 89 glioblastomas and correlated with TP53 mutation status, tumour-associated macrophage content and various immune cell markers. Elevated levels of Δ133p53β mRNA characterised glioblastomas with increased CD163-positive macrophages and wild-type TP53. In situ based analyses found Δ133p53β expression localised to malignant cells in areas with increased hypoxia, and in cells with the monocyte chemoattractant protein C-C motif chemokine ligand 2 (CCL2) expressed. Tumours with increased Δ133p53β had increased numbers of cell positive for macrophage colony stimulating factor 1 receptor (CSF1R) and programmed death ligand 1 (PDL1). In addition, cells expressing a murine ‘mimic’ of Δ133p53 (Δ122p53) were resistant to temozolomide treatment and oxidative stress. Our findings suggest elevated Δ133p53β is an alternative pathway to TP53 mutation in glioblastoma that aids tumour progression by promoting an immunosuppressive and chemoresistant environment. Adding Δ133p53β to a TP53 signature along with TP53 mutation status will better predict treatment resistance in glioblastoma. This article is protected by copyright. All rights reserved.
    Isolation and profiling of plasma microRNAs: Biomarkers for asthma and allergic rhinitis
    Ronaldo P. Panganiban - 2018
    Chronic inflammatory diseases can be particularly challenging to diagnose and characterize, as inflammatory changes in tissue may not be present in blood. There is a crucial need to develop non-invasive biomarkers that would be useful in diagnosing disease and selecting medical therapies. For example, there are no blood tests to diagnose asthma, a common inflammatory lung disease. MicroRNA (miRNA) expression profiling in blood is emerging as a potentially sensitive and useful biomarker of many diseases. In particular, we have characterized a cost-effective PCR-based array technology to measure and profile circulating miRNAs in the plasma of patients with allergic rhinitis and asthma. Here, we describe the methods to isolate, quantify, and analyze miRNAs in the plasma of human subjects as well as ways to determine their diagnostic utility.
    Gemcitabine resistance mediated by ribonucleotide reductase M2 in lung squamous cell carcinoma is reversed by GW8510 through autophagy induction
    Ping Chen - 2018
    Although chemotherapeutic regimen containing gemcitabine is the first-line therapy for advanced lung squamous cell carcinoma (LSCC), gemcitabine resistance remains an important clinical problem. Some studies suggest that overexpressions of ribonucleotide reductase subunit M2 (RRM2) may be involved in gemcitabine resistance. We used a novel RRM2 inhibitor, GW8510, as a gemcitabine sensitization agent to investigate the therapeutic utility in reversing gemcitabine resistance in LSCC. Results showed that the expressions of RRM2 were increased in gemcitabine intrinsic resistant LSCC cells upon gemcitabine treatment. GW8510 not only suppressed LSCC cell survival, but also sensitized gemcitabine-resistant cells to gemcitabine through autophagy induction mediated by RRM2 downregulation along with decreases of deoxyribonucleotide triphosphate (dNTP) levels. The combination of GW8510 and gemcitabine produced a synergistic effect on killing LSCC cells. The synergism of the two agents was impeded by addition of autophagy inhibitors chloroquine or bafilomycin A1, or knockdown of the autophagy gene BECN1. Moreover, GW8510-caused LSCC cell sensitization to gemcitabine through autophagy induction was parallel with impairment of DNA double strand break repair and marked increase of cell apoptosis, revealing a crosstalk between autophagy and DNA damage repair, and an interplay between autophagy and apoptosis. Finally, gemcitabine sensitization mediated by autophagy induction through GW8510-caused RRM2 downregulation was demonstrated in vivo gemcitabine-resistant LSCC tumor xenograft, further indicating that the sensitization is dependent on autophagy activation. In conclusions, GW8510 can reverses gemcitabine resistance in LSCC cells through RRM2 downregulation-mediated autophagy induction, and GW850 may be a promising therapeutic agent against LSCC as it combined with gemcitabine.
    Comparative transcriptome analysis of the swimbladder reveals expression signatures in response to low oxygen stress in channel catfish, Ictalurus punctatus.
    Yujia Yang - 2018
    Channel catfish is the leading aquaculture species in the US, and one of the reasons for its application in aquaculture is its relatively high tolerance against hypoxia. However, hypoxia can still cause huge economic losses to the catfish industry. Studies on hypoxia tolerance, therefore, are important for aquaculture. Fish swimbladder has been considered as an accessory respiration organ surrounded by a dense capillary countercurrent exchange system. In this regard, we conducted RNA-Seq analysis with swimbladder samples of catfish under hypoxic and normal conditions to determine if swimbladder was responsive to low oxygen treatment, and to reveal genes, their expression patterns and pathways involved in hypoxia responses in catfish. A total of 155 differentially expressed genes (DEGs) were identified from swimbladder of adult catfish, whereas a total of 2,127 DEGs were identified from swimbladder of fingerling catfish, under hypoxic condition as compared to untreated controls. Subsequent pathway analysis revealed that many DEGs under hypoxia were involved in HIF signaling pathway (nos2, eno2, camk2d2, prkcb, cdkn1a, eno1, and tfrc), MAPK signaling pathway (voltage-dependent calcium channel subunit genes), PI3K/Akt/mTOR signaling pathway (itga6, g6pc, and cdkn1a), Ras signaling pathway (efna3 and ksr2), and signaling by VEGF (fn1, wasf3, and hspb1) in catfish swimbladder. This study provided insights into regulation of gene expression and their involved gene pathways in catfish swimbladder in response to low oxygen stresses.
    Heparanase is expressed in adult human osteoarthritic cartilage and drives catabolic responses in primary chondrocytes
    G. Gibor - 2018
    Summary Objectives The chondrocytes' pericellular matrix acts as a mechanosensor by sequestering growth factors that are bound to heparan sulfate (HS) proteoglycans. Heparanase is the sole mammalian enzyme with HS degrading endoglycosidase activity. Here, we aimed to ascertain whether heparanase plays a role in modulating the anabolic or catabolic responses of human articular chondrocytes. Methods Primary chondrocytes were incubated with pro-heparanase and catabolic and anabolic gene expression was analyzed by quantitative polymerase chain reaction (PCR). MMP13 enzymatic activity in the culture medium was measured with a specific fluorescent assay. Extracellular regulated kinase (ERK) phosphorylation was evaluated by Western blot. Human osteoarthritis (OA) cartilage was assessed for heparanase expression by reverse-transcriptase PCR, by Western blot and by a heparanase enzymatic activity assay. Results Cultured chondrocytes rapidly associated with and activated pro-heparanase. Heparanase induced the catabolic genes MMP13 and ADAMTS4 and the secretion of active MMP13, and down-regulated the anabolic genes ACAN and COL2A1. PG545, a HS-mimetic, inhibited the effects of heparanase. Heparanase expression and enzymatic activity were demonstrated in adult human osteoarthritic cartilage. Heparanase induced ERK phosphorylation in cultured chondrocytes and this could be inhibited by PG545, by fibroblast growth factor 2 (FGF2) neutralizing antibodies and by a FGF-receptor inhibitor. Conclusions Heparanase is active in osteoarthritic cartilage and induces catabolic responses in primary human chondrocytes. This response is due, at least in part, to the release of soluble growth factors such as FGF2.
    Characterization of carfilzomib-resistant non-small cell lung cancer cell lines
    Neale T. Hanke - 2018
    PurposeWe previously showed that carfilzomib (CFZ) has potent anti-proliferative and cytotoxic activity in a broad range of lung cancer cell lines. Here we investigate possible mechanisms of CFZ acquired resistance in lung cancer cell lines.MethodsCFZ-resistant non-small cell lung cancer (NSCLC) cell lines were developed by exposing A549 and H520 cells to stepwise increasing concentrations of CFZ. Resistance to CFZ and cross-resistance to bortezomib and other chemotherapy drugs was measured using the MTT assay. Cytotoxicity to CFZ was determined using a CytoTox assay. Western blot was used to measure apoptosis, autophagy, and drug efflux transporter-related proteins. Quantitative targeted whole transcriptome sequencing and quantitative RT-PCR was used to measure gene expression. Flow cytometry was used to analyze intracellular accumulation of doxorubicin.ResultsThe CFZ IC50 value of the resistant cells increased versus parental lines (2.5-fold for A549, 122-fold for H520). Resistant lines showed reduced expression of apoptosis and autophagy markers and reduced death versus parental lines following CFZ treatment. Both resistant lines exhibited higher P-glycoprotein (Pgp) gene (TempO-Seq® analysis, increased 1.2-fold in A549, > 9000-fold in H520) and protein expression levels versus parental lines. TempO-Seq® analysis indicated other drug resistance pathways were upregulated. The resistant cell lines demonstrated less accumulation of intracellular doxorubicin, and were cross-resistant to other Pgp client drugs: bortezomib, doxorubicin, and paclitaxel, but not cisplatin.ConclusionsUpregulation of Pgp appears to be an important, but not the only, mechanism of CFZ resistance in NSCLC cell lines.
    Effect of green light on nitrate reduction and edible quality of hydroponically grown lettuce (Lactuca sativa L.) under short-term continuous light from red and blue light-emitting diodes
    Zhonghua Bian - 2018
    Most leafy vegetables can accumulate large amounts of nitrate, which are often associated with harmful effects on human health. Nitrate assimilation in plants is determined by various growth conditions, especially light conditions including light intensity, light duration and light spectral composition. Red and blue light are the most important since both drive photosynthesis. Increasingly, recent evidence demonstrates a role for green light in the regulation of plant growth and development by regulating the expression of some specific genes. However, the effect of green light on nitrate assimilation has been underestimated. In this study, lettuce (Lactuca sativa L. cv. Butterhead) was treated with continuous light (CL) for 48 h by combined red and blue light-emitting diodes (LEDs) supplemented with or without green LED in an environment-controlled growth chamber. The results showed that nitrate reductase (NR) and nitrite reductase (NiR) related-gene expression and nitrate assimilation enzyme activities were affected by light spectral composition and light duration of CL. Adding green light to red and blue light promoted NR and NiR expressions at 24 h, subsequently, it reduced expression of these genes during CL. Compared with red and blue LEDs, green light supplementation significantly increased NR, NiR, glutamate synthase (GOGAT) and glutamine synthetase (GS) activities. Green-light supplementation under red and blue light was more efficient in promoting nutritional values by maintaining high net photosynthetic rates (Pn) and maximal photochemical efficiency (Fv/Fm).
    The role of zinc in calprotectin expression in human myeloid cells
    Simone Lienau - 2018
    Elevated levels of calprotectin and other inflammatory mediators have been observed in inflammatory diseases paralleling serum hypozincemia. While a role of zinc in the regulation of tumor necrosis factor α, interleukin (IL)-1β and IL-6 expression has been established, the direct interrelation of zinc and calprotectin (S100A8/S100A9 heterodimer) expression is so far missing. In the present study, we analyzed mRNA and protein levels of S100A8 and S100A9 in monocytic Mono Mac (MM)1 and early myeloid THP-1 and U937 cells to elucidate the effect of zinc deficiency on their expression. We could depict that zinc deficiency alone enhances mRNA and protein expression of calprotectin in myeloid cells, independently from maturity stage. Moreover, pre-existing zinc deficiency augmented lipopolysaccharide (LPS)-induced calprotectin expression in CD14+ MM1, but not in CD14− U937 or CD14− THP-1 cells. Zinc deficiency and LPS seem therefore to activate different intracellular pathways. Our findings suggest that zinc does not only regulate the activity of calprotectin but also its expression by human myeloid cells.
    Traditional kefir reduces weight gain and improves plasma and liver lipid profiles more successfully than a commercial equivalent in a mouse model of obesity
    Benjamin C. T. Bourrie - 2018
    Kefir, a fermented milk beverage, has shown promise in alleviating obesity and associated metabolic dysfunction. However, microbial characteristics are variable among traditional kefirs, and commercial kefirs drastically differ from traditional kefir. This study investigated the ability of four traditional and one commercial kefir to control weight gain, plasma cholesterol, and liver triglycerides in a high fat diet-induced obesity mouse model. Two traditional kefirs decreased weight gain and plasma cholesterol levels. Conversely, commercial kefir had no beneficial effect. Additionally, one of the four traditional kefirs lowered liver triglycerides, which corresponded with decreases in the expression of fatty acid synthase, a gene involved in liver lipogenesis. Together with evidence of gut microbiome modulation, this study shows that traditional kefir has the potential for improving metabolic dysfunction associated with obesity. Notably, differences in kefir microbial populations may influence the ability of traditional kefir to positively impact host metabolic health.
    Distinct roles for REV-ERBα and REV-ERBβ in oxidative capacity and mitochondrial biogenesis in skeletal muscle
    Ariadna Amador - 2018
    The nuclear receptors REV-ERBα and REV-ERBβ have been demonstrated to be core members of the circadian clock and participate in the regulation of a diverse set of metabolic functions. Due to their overlapping tissue expression patterns and gene expression profiles, REV-ERBβ is thought to be redundant to REV-ERBα. Recent work has highlighted REV-ERBα’s role in the regulation of skeletal muscle oxidative capacity and mitochondrial biogenesis. Considering the similarity between the REV-ERBs and the hypothesized overlap in function, we sought to determine whether REV-ERBβ-deficiency presented with a similar skeletal muscle phenotype as REV-ERBα-deficiency. Ectopic overexpression in C2C12 cells demonstrated that REV-ERBβ drives mitochondrial biogenesis and the expression of genes involved in fatty acid oxidation. Intriguingly, knock down of REV-ERBβ in C2C12 cultures also resulted in mitochondrial biogenesis and increased expression of genes involved in fatty acid β-oxidation. To determine whether these effects occurred in vivo, we examined REV-ERBβ-deficient mice and observed a similar increase in expression of genes involved in mitochondrial biogenesis and fatty acid β-oxidation. Consistent with these results, REV-ERBβ-deficient mice exhibited an altered metabolic phenotype compared to wild-type littermate controls when measured by indirect calorimetry. This likely compensated for the increased food consumption that occurred, possibly aiding in the maintenance of their weight over time. Since feeding behaviors are a direct circadian output, this study suggests that REV-ERBβ may have more subtle effects on circadian behaviors than originally identified. Furthermore, these data implicate REV-ERBβ in the control of skeletal muscle metabolism and energy expenditure and suggest that development of REV-ERBα versus REV-ERBβ selective ligands may have therapeutic utility in the treatment of metabolic syndrome.
    Obesity in mares promotes uterine inflammation and alters embryo lipid fingerprints and homeostasis
    Dawn R. Sessions-Bresnahan - 2018
    Abstract. Maternal body composition can be an important determinant for development of obesity and metabolic syndrome in adult offspring. Obesity-related outco
    Cyanidin Curtails Renal Cell Carcinoma Tumorigenesis
    Xiaobing Liu - 2018
    Cyanidin is an anthocyanin found in many foods. Although its variable antioxidant levels are well-documented, little is known about its effects on renal cell carcinoma (RCC) tumorigenesis. This study, therefore, investigated the effects of cyanidin on the proliferation, migration, and invasion of renal cell carcinoma lines and demonstrated, for the first time, significant inhibitory effects of cyanidin on RCC tumorigenesis. Methods: RCC cells were treated with different doses of cyanidin and the effects were tested by Cell Counting Kit-8 reagent, clone formation assay, transwell assay, and flow cytometry. Moreover, the cyanidin-mediated mechanism that curtailed tumorigenesis was analyzed by RNA sequencing (RNA-seq). Sequencing data from The Cancer Genome Atlas (TCGA) were used to compare the expression of both early growth response protein 1 (EGR1) and selenoprotein W (SEPW1) in RCC and tumor-free adjacent normal tissue samples. Real-time PCR (RT-PCR) and/or western blot were used to assess the expression of E-cadherin, cleaved-caspase3, Bcl2, p62, and ATG4. Results: We found significantly greater induction of cell-cycle arrest, apoptosis, and suppression of RCC cell invasion and migration at concentrations of 25 µM and 100 µM than at a concentration of 50 µM. It was also discovered, first through RNA-seq then confirmed by RT-PCR, that cyanidin (100 µM) inhibited RCC carcinogenesis through EGR1 and SEPW1. TCGA data indicated that the expression level of EGR1 was lower and that of SEPW1 was higher in RCC tumor tissue than in normal tissues. Moreover, western blot and/or RT-PCR indicated that cleaved-caspase3 was enhanced and E-cadherin was inhibited by cyanidin treatment. Furthermore, western blot and RT-PCR also showed regulation of p62 and ATG4, which are associated with autophagy. Cyanidin in vivo significantly inhibited the growth of xenografts in nude mice. Conclusions: The results of this study showed the therapeutic potential of cyanidin for the treatment of RCC and the prevention of recurrence and metastasis.
    Low-dose irradiated mesenchymal stromal cells break tumor defensive properties in vivo
    Francesca Romana Stefani - 2018
    Solid tumors, including gliomas, still represent a challenge to clinicians and first line treatments often fail, calling for new paradigms in cancer therapy. Novel strategies to overcome tumor resistance are mainly represented by multi-targeted approaches, and cell vector-based therapy is one of the most promising treatment modalities under development. Here, we show that mouse bone marrow-derived mesenchymal stromal cells (MSCs), when primed with low-dose irradiation (irMSCs), undergo changes in their immunogenic and angiogenic capacity and acquire anti-tumoral properties in a mouse model of glioblastoma (GBM). Following grafting in GL261 glioblastoma, irMSCs migrate extensively and selectively within the tumor and infiltrate predominantly the perivascular niche, leading to rejection of established tumors and cure in 29% of animals. The therapeutic radiation dose window is narrow, with effects seen between 2 and 15 Gy, peaking at 5 Gy. A single low-dose radiation decreases MSCs inherent immune suppressive properties in vitro as well as shapes their immune regulatory ability in vivo. Intra-tumorally grafted irMSCs stimulate the immune system and decrease immune suppression. Additionally, irMSCs enhance peri-tumoral reactive astrocytosis and display anti-angiogenic properties. Hence, the present study provides strong evidence for a therapeutic potential of low-dose irMSCs in cancer as well as giving new insight into MSC biology and applications. This article is protected by copyright. All rights reserved.
    Triggering the activation of Activin A type II receptor in human adipose stem cells towards tenogenic commitment using mechanomagnetic stimulation
    A. I. Gonçalves - 2018
    Stem cell therapies hold potential to stimulate tendon regeneration and homeostasis, which is maintained in response to the native mechanical environment. Activins are members of the mechano-responsive TGF-β superfamily that participates in the regulation of several downstream biological processes. Mechanosensitive membrane receptors such as activin can be activated in different types of stem cells via magnetic nanoparticles (MNPs) through remote magnetic actuation resulting in cell differentiation. In this work, we target the Activin receptor type IIA (ActRIIA) in human adipose stem cells (hASCs), using anti-ActRIIA functionalized MNPs, externally activated through a oscillating magnetic bioreactor. Upon activation, the phosphorylation of Smad2/3 is induced allowing translocation of the complex to the nucleus, regulating tenogenic transcriptional responses. Our study demonstrates the potential remote activation of MNPs tagged hASCs to trigger the Activin receptor leading to tenogenic differentiation. These results may provide insights toward tendon regeneration therapies.
    Insecticide toxicity associated with detoxification enzymes and genes related to transcription of cuticular melanization among color morphs of Asian citrus psyllid
    Xue Dong Chen - 2018
    The Asian citrus psyllid (Diaphorina citri Kuwayama) is known to exhibit abdominal color polymorphisms. In the current study, susceptibility to four insecticides was compared among orange/yellow, blue/green and gray/brown color morphs of field collected D. citri. The LD50 values and 95% fiducial limits were quantified for each insecticide and color morph combination and ranged between 0.10 ng/μL (0.06–0.10) and 6.16 ng/μL (3.30–12.50). Second, we measured the detoxification enzyme activity levels of orange/yellow, blue/green and gray/brown color morphs for cytochrome P450, glutathione S-transferase, and general esterase. The mean P450 activity (equivalent units) was significantly lower in gray/brown (0.152 ± 0.006) and blue/green morphs (0.149 ± 0.005) than in the orange/yellow morphs (0.179 ± 0.008). GST activity (μmol/min/mg protein) was significantly lower in the orange/yellow morph (299.70 ±1.24) than gray/brown (350.86 ± 1.19) and blue/green (412.25 ± 1.37) morphs. The mean EST activity (μmol/min/mg protein) was significantly higher in blue/green (416.72 ± 5.12) and gray/brown morphs (362.19 ± 4.69) than in the orange/yellow morphs (282.56 ± 2.93). Additionally, we analyzed the relative expression of assortment genes involved in cuticular melanization and basal immunity. The transcripts of Dopa Decarboxylase and Tyrosine Hydroxylase were expressed higher in blue/green and gray/brown than orange/yellow morphs. The transcription results paralleled the susceptibility of D. citri to organophosphate, neonicotinoid and pyrethroid insecticides. GST and EST activity may also be correlated with low levels of insecticide susceptibility. Cuticular melanization could be a factor for the development of resistance to insecticides among different color morphs.
    Study of the beneficial effects of green light on lettuce grown under short-term continuous red and blue light-emitting diodes
    Zhonghua Bian - 2018
    Red and blue light are the most important light spectra for driving photosynthesis to produce adequate crop yield. It is also believed that green light may contribute to adaptations to growth. However, the effects of green light, which can trigger specific and necessary responses of plant growth, have been underestimated in the past. In this study, lettuce (Lactuca sativa L.) was exposed to different continuous light (CL) conditions for 48 h by a combination of red and blue light-emitting diodes (LEDs) supplemented with or without green LEDs, in an environmental-controlled growth chamber. Green light supplementation enhanced photosynthetic capacity by increasing net photosynthetic rates (Pn), maximal photochemical efficiency (Fv/Fm), electron transport for carbon fixation (JPSII) and chlorophyll content in plants under the CL treatment. Green light decreased malondialdehyde and H2O2 accumulation by increasing the activities of superoxide dismutase (SOD; EC and ascorbate peroxidase (APX; EC after 24 h of CL. Supplemental green light significantly increased the expression of photosynthetic genes LHCb and PsbA from 6 to 12 h, and these gene expression were maintained at higher levels than those under other light conditions between 12 and 24 h. However, a notable down-regulation of both LHCb and PsbA was observed during 24 to 48 h. These results indicate that the effects of green light on lettuce plant growth, via enhancing activity of particular components of antioxidantive enzyme system and promoting of LHCb and PsbA expression to maintain higher photosynthetic capacity, alleviated a number of the negative effects caused by CL.
    Improved apple latent spherical virus-induced gene silencing in multiple soybean genotypes through direct inoculation of agro-infiltrated Nicotiana benthamiana extract
    C. R. Gedling - 2018
    Virus induced gene silencing (VIGS) is a powerful genomics tool for interrogating the function of plant genes. Unfortunately, VIGS vectors often produce disease symptoms that interfere with the silencing phenotypes of target genes, or are frequently ineffective in certain plant genotypes or tissue types. This is especially true in crop plants like soybean [Glycine max (L.) Merr]. To address these shortcomings, we modified the inoculation procedure of a VIGS vector based on Apple latent spherical virus (ALSV). The efficacy of this new procedure was assessed in 19 soybean genotypes using a soybean Phytoene desaturase (GmPDS1) gene as the VIGS target. Silencing of GmPDS1 was easily scored as photo-bleached leaves and/or stems.
    Redundant regulation of localization and protein stability of DmPar3
    Lars Kullmann - 2018
    Apical–basal polarity is an important characteristic of epithelia and Drosophila neural stem cells. The conserved Par complex, which consists of the atypical protein kinase C and the scaffold proteins Baz and Par6, is a key player in the establishment of apical–basal cell polarity. Membrane recruitment of Baz has been reported to be accomplished by several mechanisms, which might function in redundancy, to ensure the correct localization of the complex. However, none of the described interactions was sufficient to displace the protein from the apical junctions. Here, we dissected the role of the oligomerization domain and the lipid-binding motif of Baz in vivo in the Drosophila embryo. We found that these domains function in redundancy to ensure the apical junctional localization of Baz: inactivation of only one domain is not sufficient to disrupt the function of Baz during apical–basal polarization of epithelial cells and neural stem cells. In contrast, mutation of both domains results in a strongly impaired protein stability and a phenotype characterized by embryonic lethality and an impaired apical–basal polarity in the embryonic epithelium and neural stem cells, resembling a baz-loss of function allele. Strikingly, the binding of Baz to the transmembrane proteins E-Cadherin, Echinoid, and Starry Night was not affected in this mutant protein. Our findings reveal a redundant function of the oligomerization and the lipid-binding domain, which is required for protein stability, correct subcellular localization, and apical–basal cell polarization.
    Short-term effect of FSH on gene expression in bovine granulosa cells in vitro
    Anne-Laure Nivet - 2018
    In reproduction, FSH is one of the most important hormones, especially in females, because it controls the number of follicles and the rate of follicular growth. Although several studies have examined the follicular response at the transcriptome level, it is difficult to obtain a clear and complete picture of the genes responding to an increase in FSH in an in vivo context because follicles undergo rapid morphological and physical changes during their growth. To help define the transcriptome downstream response to FSH, an in vitro model was used in the present study to observe the short-term (4 h) cellular response. Gene expression analysis highlighted a set of novel transcripts that had not been reported previously as being part of the FSH response. Moreover, the results of the present study indicate that the epithelial to mesenchymal transition pathway is inhibited by short-term FSH stimuli, maintaining follicles in a growth phase and preventing differentiation. Modulating gene expression in vitro has physiological limitations, but it can help assess the potential downstream response and begin the mapping of the granulosa cell transcriptome in relation to FSH. This information is a key feature to help discriminate between the effects of FSH and LH, or to elucidate the overlapping of insulin-like growth factor 1 and FSH in the granulosa mitogenic response.
    Hydroxychavicol, a key ingredient of Piper betle induces bacterial cell death by DNA damage and inhibition of cell division
    Deepti Singh - 2018
    Antibiotic resistance is a global problem and there is an urgent need to augment the arsenal against pathogenic bacteria. The emergence of different drug resistant bacteria is threatening human lives to be pushed towards the pre-antibiotic era. Botanical sources remain a vital source of diverse organic molecules that possess antibacterial property as well as augment existing antibacterial molecules. Piper betle, a climber, is widely used in south and south-east Asia whose leaves and nuts are consumed regularly. Hydroxychavicol (HC) isolated from Piper betle has been reported to possess antibacterial activity. It is currently not clear how the antibacterial activity of HC is manifested. In this investigation we show HC generates superoxide in E. coli cells. Antioxidants protected E. coli against HC induced cell death while gshA mutant was more sensitive to HC than wild type. DNA damage repair deficient mutants are hypersensitive to HC and HC induces the expression of DNA damage repair genes that repair oxidative DNA damage. HC treated E. coli cells are inhibited from growth and undergo DNA condensation. In vitro HC binds to DNA and cleaves it in presence of copper. Our data strongly indicates HC mediates bacterial cell death by ROS generation and DNA damage. Damage to iron sulfur proteins in the cells contribute to amplification of oxidative stress initiated by HC. Further HC is active against a number of Gram negative bacteria isolated from patients with a wide range of clinical symptoms and varied antibiotic resistance profiles.
    Growth characteristics of Chlamydia trachomatis in human intestinal epithelial Caco-2 cells
    Ildikó Lantos - 2018
    Chlamydia trachomatis is an obligate intracellular bacterium causing infections of the eyes, urogenital and respiratory tracts. Asymptomatic, repeat and chronic infections with C. trachomatis are common in the urogenital tract potentially causing severe reproductive pathology. Animal models of infection and epidemiological studies suggested the gastrointestinal tract as a reservoir of chlamydiae and as a source of repeat urogenital infections. Thus, we investigated the growth characteristics of C. trachomatis in human intestinal epithelial Caco-2 cells and the infection-induced defensin production. Immunofluorescence staining and transmission electron microscopy showed the presence of chlamydial inclusions in the cells. Chlamydial DNA and viable C. trachomatis were recovered from Caco-2 cells in similar quantity compared to that detected in the usual in vitro host cell of this bacterium. The kinetics of expression of selected C. trachomatis genes in Caco-2 cells indicated prolonged replication with persisting high expression level of late genes and of heat shock protein gene groEL. Replication of C. trachomatis induced moderate level of β-defensin-2 production by Caco-2 cells, which might contribute to avoidance of immune recognition in the intestine. According to our results, Caco-2 cells support C. trachomatis replication, suggesting that the gastrointestinal tract is a site of residence for these bacteria.
    Macrophage-Derived Protein S Facilitates Apoptotic Polymorphonuclear Cell Clearance by Resolution Phase Macrophages and Supports Their Reprogramming
    Delphine Lumbroso - 2018
    The complete resolution of inflammation requires the uptake of apoptotic polymorphonuclear cells (PMN) by local macrophages (efferocytosis) and the consequent reprogramming of the engulfing phagocytes to reparative and pro-resolving phenotypes. The tyrosine kinase receptors TYRO3, AXL, and MERTK (collectively named TAM) are fundamental mediators in regulating inflammatory responses and efferocytosis. Protein S (PROS1) is a ligand for all TAM receptors that mediates various aspects of their activity. However, the involvement of PROS1 in the resolution of inflammation is incompletely understood. Here, we report the upregulation of Pros1 in macrophages during the resolution of inflammation. Selective knockout of Pros1 in the myeloid lineage significantly downregulated macrophage pro-resolving properties. Hence, Pros1-deficient macrophages engulfed fewer apoptotic PMN remnants in vivo, and exogenous PROS1 rescued impaired efferocytosis ex vivo. Moreover, Pros1-deficient peritoneal macrophages secreted higher levels of the pro-inflammatory mediators TNFα and CCL3, while they secreted lower levels of the reparative/anti-inflammatory IL-10 following exposure to lipopolysaccharide in comparison to their WT counterparts. Moreover, Pros1-deficient macrophages expressed less of the anti-inflammatory/pro-resolving enzymes arginase-1 and 12/15-lipoxygenase and produced less of the specialized pro-resolving mediator resolvin D1. Altogether, our results suggest that macrophage-derived PROS1 is an important effector molecule in regulating the efferocytosis, maturation, and reprogramming of resolution phase macrophages, and imply that PROS1 could provide a new therapeutic target for inflammatory and fibrotic disorders.
    RANKL/RANK Pathway and its Inhibitor RANK-Fc in Uterine Leiomyoma Growth
    Deborah E. Ikhena - 2018
    ContextUterine leiomyomas are the most common type of gynecologic tumor in women.ObjectiveTo determine the role of the cytokine RANKL, its receptor RANK, and the RANKL/RANK pathway inhibitor RANK-Fc in leiomyoma growth.DesignmRNA or protein levels of RANKL, RANK and proliferation markers cyclin D1 and Ki67 were assessed in various leiomyoma tissues and cell populations. Human xenograft experiments were performed to determine the effects of RANK-Fc on leiomyoma growth in vivo.SettingResearch laboratoryPatientsTwenty-four regularly cycling premenopausal women (age 28-49 years) who were not on hormone therapy.InterventionsnoneMain Outcome MeasureTumor growth in a murine xenograft model following targeting of the RANKL/RANK pathway with RANK-Fc.ResultsRANKL mRNA levels in leiomyoma were significantly higher than those in myometrial tissues. The highest RANK levels were found in the leiomyoma stem cell (LSC) population, which is deficient in progesterone receptor (PR). Conversely, the highest RANKL levels were found in the PR-rich leiomyoma intermediate cell (LIC) population. R5020, a PR agonist, specifically increased RANKL expression in LICs. RANK-Fc blocked RANKL-induced expression of the proliferative gene cyclin D1. Treatment with RANK-Fc also significantly decreased tumor growth in vivo and diminished the expression of proliferation marker Ki67 in tumors (p<0.01, n=4).ConclusionsTreatment with the RANKL/RANK pathway inhibitor RANK-Fc significantly decreased human leiomyoma cell proliferation and tumor growth. This suggests that the RANKL/RANK pathway could serve as a potential target for the prevention and treatment of uterine leiomyoma.
    Cryosurvival of rabbit embryos obtained after superovulation with corifollitropin alfa with or without LH
    José Salvador Vicente - 2018
    The efficiency of an embryo bank depends on provision of optimal conditions for recovery, cryopreservation and transfer to a breed or strain. In this sense, increasing the number of embryos available using superovulation should improve the cryobank efficiency. However, vagueness of response to conventional protocols to control or increase ovarian response and the quality of oocytes and embryos and their cryotolerance remain a challenge. The aim of our study was to evaluate the effect of corifollitropin alpha (CTP) and a recombinant human FSH (rhFSH), alone or supplemented with rhLH, on embryo cryosurvival by in vitro development and OCT4 and NANOG mRNA abundance at blastocyst stage and offspring rate. In vitro development of vitrified embryos was not significantly affected by superstimulation with or without rhLH supplementation, resulting in similar development rates to those of the control groups (fresh and vitrified embryos from non-superstimulated donor does). Blastocysts developed from vitrified embryos showed higher levels of OCT4 transcript abundance than fresh control, while NANOG transcript abundance was only higher in the blastocysts developed from vitrified embryos after superstimulation treatment in comparison with control groups. The implantation and offspring rates at birth were negatively affected by supplementation with rhLH. Both rhFSH or CTP vitrified embryo groups showed an implantation rate similar to those of the control groups, but an offspring rate lower than control. In conclusion, embryos produced using corifollitropin alpha did not compromise the cryosurvival of vitrified embryos in the rabbit. In addition, this study points out the negative effect of rhLH supplementation in terms of offspring rate on embryo vitrification.
    Regulation of dual specificity phosphatases in breast cancer during initial treatment with Herceptin: a Boolean model analysis
    Petronela Buiga - 2018
    25% of breast cancer patients suffer from aggressive HER2-positive tumours that are characterised by overexpression of the HER2 protein or by its increased tyrosine kinase activity. Herceptin is a major drug used to treat HER2 positive breast cancer. Understanding the molecular events that occur when breast cancer cells are exposed to Herceptin is therefore of significant importance. Dual specificity phosphatases (DUSPs) are central regulators of cell signalling that function downstream of HER2, but their role in the cellular response to Herceptin is mostly unknown. This study aims to model the initial effects of Herceptin exposure on DUSPs in HER2-positive breast cancer cells using Boolean modelling.
    Genomic and transcriptomic alterations in Leishmania donovani lines experimentally resistant to antileishmanial drugs
    Alberto Rastrojo - 2018
    Leishmaniasis is a serious medical issue in many countries around the World, but it remains largely neglected in terms of research investment for developing new control and treatment measures. No vaccines exist for human use, and the chemotherapeutic agents currently used are scanty. Furthermore, for some drugs, resistance and treatment failure are increasing to alarming levels. The aim of this work was to identify genomic and trancriptomic alterations associated with experimental resistance against the common drugs used against VL: trivalent antimony (SbIII, S line), amphotericin B (AmB, A line), miltefosine (MIL, M line) and paromomycin (PMM, P line). A total of 1006 differentially expressed transcripts were identified in the S line, 379 in the A line, 146 in the M line, and 129 in the P line. Also, changes in ploidy of chromosomes and amplification/deletion of particular regions were observed in the resistant lines regarding the parental one. A series of genes were identified as possible drivers of the resistance phenotype and were validated in both promastigotes and amastigotes from Leishmania donovani, Leishmania infantum and Leishmania major species. Remarkably, a deletion of the gene LinJ.36.2510 (coding for 24-sterol methyltransferase, SMT) was found to be associated with AmB-resistance in the A line. In the P line, a dramatic overexpression of the transcripts LinJ.27.T1940 and LinJ.27.T1950 that results from a massive amplification of the collinear genes was suggested as one of the mechanisms of PMM resistance. This conclusion was reinforced after transfection experiments in which significant PMM-resistance was generated in WT parasites over-expressing either gene LinJ.27.1940 (coding for a D-lactate dehydrogenase-like protein, D-LDH) or gene LinJ.27.1950 (coding for an aminotransferase of branched-chain amino acids, BCAT). This work allowed to identify new drivers, like SMT, the deletion of which being associated with resistance to AmB, and the tandem D-LDH-BCAT, the amplification of which being related to PMM resistance.
    Follicle capacitation: A meta-analysis to investigate the transcriptome dynamics following FSH decline in bovine granulosa cells.
    David A. Landry - 2018
    In recent years, exciting progress was made to improve the embryo outcome after ovarian stimulation in domestic animals. The practice of follicle-stimulating hormone (FSH) withdrawal, which is defined as the period of time between the last injection of FSH and oocyte retrieval, resulted in embryo yields significantly superior. Since then, specific changes in the transcriptome of granulosa cells were associated with the increase and also the decline in oocyte developmental competence following the FSH decline. In this study, we integrated large data sets from a public depository using a meta-analysis in order to elucidate the molecular changes occurring in granulosa cells following FSH decline in association with oocyte developmental competence. The meta-analysis revealed that the gene expression patterns observed during this period resulted from the downregulation of proliferative signals, and the upregulation of differentiation signals and early apoptotic signals. Additionally, FSH decline induced cellular hypoxia and triggered the expression of pro-inflammatory molecules which resulted in early atresia and mimicked the luteinizing hormone (LH) surge signaling to ovulation. To characterize this unique differentiation period, we suggest using the term “follicle capacitation” to refer to the functional changes occurring within the follicle in order to prepare the molecular machinery for the LH surge and ovulation following FSH decline. During this period, the follicle confers the oocyte with developmental competence to become a viable embryo. However, if this period is not rapidly followed by a LH surge, apoptosis signals are increased to generate follicular atresia and decrease oocyte quality.
    The integrated analysis of transcriptome and proteome for exploring the biodegradation mechanism of 2, 4, 6-trinitrotoluene by Citrobacter sp
    Hung-Yu Liao - 2018
    Citrobacter sp. has been shown to degrade 2,4,6-trinitrotoluene (TNT). However, the mechanism of its TNT biodegradation is poorly understood. An integrated proteome and transcriptome analysis was performed for investigating the differential genes and differential proteins in bacterial growth at the onset of experiments and after 12 h treatment with TNT. With the RNA sequencing, we found a total of 3792 transcripts and 569 differentially expressed genes (≥2 fold, P < 0.05) by. Genes for amino acid transport, cellular metabolism and stress-shock proteins were up-regulated, while carbohydrate transport and metabolism were down-regulated. A total of 42 protein spots (≥1.5 fold, P < 0.05) showed differential expression on two-dimensional gel electrophoresis and these proteins were identified by mass spectrometry. The most prominent proteins up-regulated were involved in energy production and conversion, amino acid transport and metabolism, posttranslational modification, protein turnover and chaperones. Proteins involved in carbohydrate transport and metabolism were down-regulated. Most notably, we observed that nemA encoding N-ethylmaleimide reductase was the most up-regulated gene involved in TNT degradation, and further proved that it can transform TNT to 4-amino-2,6-dinitrotoluene (4-ADNT) and 2-amino-4,6-dinitrotoluene (2-ADNT). This study highlights the molecular mechanisms of Citrobacter sp. for TNT removal.
    Genetic defects in mtDNA-encoded protein translation cause pediatric, mitochondrial cardiomyopathy with early-onset brain disease
    Rick Kamps - 2018
    This study aims to identify gene defects in pediatric cardiomyopathy and early-onset brain disease with oxidative phosphorylation (OXPHOS) deficiencies. We applied whole-exome sequencing in three patients with pediatric cardiomyopathy and early-onset brain disease with OXPHOS deficiencies. The brain pathology was studied by MRI analysis. In consanguineous patient 1, we identified a homozygous intronic variant (c.850-3A > G) in the QRSL1 gene, which was predicted to cause abnormal splicing. The variant segregated with the disease and affected the protein function, which was confirmed by complementation studies, restoring OXPHOS function only with wild-type QRSL1. Patient 2 was compound heterozygous for two novel affected and disease-causing variants (c.[253G > A];[938G > A]) in the MTO1 gene. In patient 3, we detected one unknown affected and disease-causing variants (c.2872C > T) and one known disease-causing variant (c.1774C > T) in the AARS2 gene. The c.1774C > T variant was present in the paternal copy of the AARS2 gene, the c.2872C > T in the maternal copy. All genes were involved in translation of mtDNA-encoded proteins. Defects in mtDNA-encoded protein translation lead to severe pediatric cardiomyopathy and brain disease with OXPHOS abnormalities. This suggests that the heart and brain are particularly sensitive to defects in mitochondrial protein synthesis during late embryonic or early postnatal development, probably due to the massive mitochondrial biogenesis occurring at that stage. If both the heart and brain are involved, the prognosis is poor with a likely fatal outcome at young age.
    Targeting the nonmevalonate pathway in Burkholderia cenocepacia increases susceptibility to certain β-lactam antibiotics
    Andrea Sass - 2018
    The non-mevalonate pathway is the sole pathway for isoprenoid biosynthesis in Burkholderia cenocepacia and possibly a novel target for the development of antibacterial chemotherapy. The goal of the present study was to evaluate the essentiality of dxr, the second gene of the non-mevalonate pathway, in B. cenocepacia and to determine whether interfering with the non-mevalonate increases susceptibility towards antibiotics. To this end, a rhamnose-inducible conditional dxr knock-down mutant of B. cenocepacia K56-2 (B. cenocepacia K56-2dxr) was constructed, by using a plasmid which enables the delivery of a rhamnose-inducible promotor in the chromosome. Expression of dxr is essential for bacterial growth; this growth defect could be complemented by expressing dxr in trans under control of a constitutive promotor, but not by providing 2-C-methyl-D-erythritol-4-phosphate, the reaction product of DXR. B. cenocepacia K56-2dxr showed markedly increased susceptibility to the β-lactam antibiotics aztreonam, ceftazidime and cefotaxime, while susceptibility to other antibiotics was not (or much less) affected, and also this increased susceptibility could be complemented by in trans expression of dxr. A similar increased susceptibility was observed when antibiotics were combined with FR900098, a known DXR inhibitor. Our data confirm that the non-mevalonate pathway is essential in B. cenocepacia and suggest that combining potent DXR inhibitors with selected β-lactam antibiotics is a useful strategy to combat B. cenocepacia infections.
    Germ cell depletion in zebrafish leads to incomplete masculinization of the brain
    Ajay Pradhan - 2018
    Zebrafish sex differentiation is under the control of multiple genes, but also relies on germ cell number for gonadal development. Morpholino and chemical mediated germ cell depletion leads to sterile male development in zebrafish. In this study we produced sterile males, using a dead end gene morpholino, to determine gonadal-brain interactions. Germ cell depletion following dnd inhibition downregulated the germ cell markers, vasa and ziwi, and later the larvae developed as sterile males. Despite lacking proper testis, the gonadal 11-ketotestosterone (11-KT) and estradiol (E2) levels of sterile males were similar to wild type males. Qualitative analysis of sexual behavior of sterile males demonstrated that they behaved like wild type males. Furthermore, we observed that brain 11-KT and E2 levels in sterile males remained the same as in the wild type males. In female brain, 11-KT was lower in comparison to wild type males and sterile males, while E2 was higher when compared to wild type males. qRT-PCR analysis revealed that the liver transcript profile of sterile adult males was similar to wild type males while the brain transcript profile was similar to wild type females. The results demonstrate that proper testis development may not be a prerequisite for male brain development in zebrafish but that it may be needed to fully masculinize the brain.
    Characterization of Caco-2 cells stably expressing the protein-based zinc probe eCalwy-5 as a model system for investigating intestinal zinc transport
    Maria Maares - 2018
    Intestinal zinc resorption, in particular its regulation and mechanisms, are not yet fully understood. Suitable intestinal cell models are needed to investigate zinc uptake kinetics and the role of labile zinc in enterocytes in vitro. Therefore, a Caco-2 cell clone was produced, stably expressing the genetically encoded zinc biosensor eCalwy-5. The aim of the present study was to reassure the presence of characteristic enterocyte-specific properties in the Caco-2-eCalwy clone. Comparison of Caco-2-WT and Caco-2-eCalwy cells revealed only slight differences regarding subcellular localization of the tight junction protein occludin and alkaline phosphatase activity, which did not affect basic integrity of the intestinal barrier or the characteristic brush border membrane morphology. Furthermore, introduction of the additional zinc-binding protein in Caco-2 cells did not alter mRNA expression of the major intestinal zinc transporters (zip4, zip5, znt-1 and znt-5), but increased metallothionein 1a-expression and cellular resistance to higher zinc concentrations. Moreover, this study examines the effect of sensor expression level on its saturation with zinc. Fluorescence cell imaging indicated considerable intercellular heterogeneity in biosensor-expression. However, FRET-measurements confirmed that these differences in expression levels have no effect on fractional zinc-saturation of the probe.
    REV-ERBβ is required to maintain normal wakefulness and the wake-inducing effect of dual REV-ERB agonist SR9009
    Ariadna Amador - 2018
    Circadian signaling regulates and synchronizes physiological and behavioral processes, such as feeding, metabolism, and sleep cycles. The endogenous molecular machinery that regulates circadian activities is located in the suprachiasmatic nucleus of the hypothalamus. The REV-ERBs are transcription factors that play key roles in the regulation of the circadian clock and metabolism. Using pharmacological methods, we recently demonstrated the involvement of the REV-ERBs in sleep architecture. Another group reported a delayed response to sleep deprivation and altered sleep cycles in REV-ERBα null mice, indicating a role of REV-ERBα in sleep. Given that REV-ERBβ is structurally and functionally similar to REV-ERBα, we investigated the role of REV-ERBβ in sleep and wakefulness by assessing electroencephalographic recordings in REV-ERBβ deficient mice and the mechanism underlying effects of loss of REV-ERBβ on sleep. Our data suggest that REV-ERBβ is involved in the maintenance of wakefulness during the activity period. In addition, REV-ERBβ-deficient mice administered with dual REV-ERB agonist SR9009, failed to show drug-induced wake increase. Finally, the expression of a number of genes known to mediate sleep and wakefulness were altered in REV-ERBβ null mice.
    3D-Printed Gelatin Scaffolds of Differing Pore Geometry Modulate Hepatocyte Function and Gene Expression
    Phillip L. Lewis - 2018
    Three dimensional (3D) printing is highly amenable to the fabrication of tissue-engineered organs of a repetitive microstructure such as the liver. The creation of uniform and geometrically repetitive tissue scaffolds can also allow for the control over cellular aggregation and nutrient diffusion. However, the effect of differing geometries, while controlling for pore size, has yet to be investigated in the context of hepatocyte function. In this study, we show the ability to precisely control pore geometry of 3D-printed gelatin scaffolds. An undifferentiated hepatocyte cell line (HUH7) demonstrated high viability and proliferation when seeded on 3D-printed scaffolds of two different geometries. However, hepatocyte specific functions (albumin secretion, CYP activity, and bile transport) increases in more interconnected 3D-printed gelatin cultures compared to a less interconnected geometry and to 2D controls. Additionally, we also illustrate the disparity between gene expression and protein function in simple 2D culture modes, and that recreation of a physiologically mimetic 3D environment is necessary to induce both expression and function of cultured hepatocytes. Statement of Significance Three dimensional (3D) printing provides tissue engineers the ability spatially pattern cells and materials in precise geometries, however the biological effects of scaffold geometry on soft tissues such as the liver have not been rigorously investigated. In this manuscript, we describe a method to 3D print gelatin into well-defined repetitive geometries that show clear differences in biological effects on seeded hepatocytes. We show that a relatively simple and widely used biomaterial, such as gelatin, can significantly modulate biological processes when fabricated into specific 3D geometries. Furthermore, this study expands upon past research into hepatocyte aggregation by demonstrating how it can be manipulated to enhance protein function, and how function and expression may not precisely correlate in 2D models.
    The effects of platelet lysate patches on the activity of tendon-derived cells
    Raquel Costa-Almeida - 2018
    Platelet-derived biomaterials are widely explored as cost-effective sources of therapeutic factors, holding a strong potential for endogenous regenerative medicine. Particularly for tendon repair, treatment approaches that shift the injury environment are explored to accelerate tendon regeneration. Herein, genipin-crosslinked platelet lysate (PL) patches are proposed for the delivery of human-derived therapeutic factors in patch augmentation strategies aiming at tendon repair. Developed PL patches exhibited a controlled release profile of PL proteins, including bFGF and PDGF-BB. Additionally, PL patches exhibited an antibacterial effect by preventing the adhesion, proliferation and biofilm formation by S. aureus, a common pathogen in orthopaedic surgical site infections. Furthermore, these patches supported the activity of human tendon-derived cells (hTDCs). Cells were able to proliferate over time and an up-regulation of tenogenic genes (SCX, COL1A1 and TNC) was observed, suggesting that PL patches may modify the behavior of hTDCs. Accordingly, hTDCs deposited tendon-related extracellular matrix proteins, namely collagen type I and tenascin C. In summary, PL patches can act as a reservoir of biomolecules derived from PL and support the activity of native tendon cells, being proposed as bioinstructive patches for tendon regeneration. Statement of significance Platelet-derived biomaterials hold great interest for the delivery of therapeutic factors for applications in endogenous regenerative medicine. In the particular case of tendon repair, patch augmentation strategies aiming at shifting the injury environment are explored to improve tendon regeneration. In this study, PL patches were developed with remarkable features, including the controlled release of growth factors and antibacterial efficacy. Remarkably, PL patches supported the activity of native tendon cells by up-regulating tenogenic genes and enabling the deposition of ECM proteins. This patch holds great potential towards simultaneously reducing post-implantation surgical site infections and promoting tendon regeneration for prospective in vivo applications.
    Characterization of three salmon louse (Lepeophtheirus salmonis) genes with fibronectin II domains expressed by tegumental type 1 glands
    Ewa Harasimczuk - 2018
    The salmon louse, Lepeophtheirus salmonis (Copepoda: Caligidae), is currently the most significant pathogen affecting the salmon farming industry in the Northern Hemisphere. Exocrine glands of blood-feeding parasites are believed to be important for the host-parasite interaction, but also in the production of substances for integument lubrication and antifouling. In L. salmonis; however, we have limited knowledge about the exocrine glands. The aim of this study was therefore to examine three genes containing fibronectin type II (FNII) domains expressed in L. salmonis tegumental type 1 (teg 1) glands, namely LsFNII1, 2 and 3. LsFNII1, 2 and 3 contains four, three, and two FNII domains respectively. Sequence alignment of LsFNII domains showed conservation of amino acids that may indicate a possible involvement of LsFNII domains in collagen binding. Ontogenetic analysis of LsFNII1, 2 and 3 revealed highest expression in pre-adult and adult lice. Localization of LsFNII1, 2 and 3 transcripts showed expression in teg 1 glands only, which are the most abundant exocrine gland type in L. salmonis. LsFNII1, 2 and 3 were successfully knocked-down by RNAi, however, alteration in gland morphology was not detected between the knock-down and control groups. Overall, this study gives first insight into FNII domain containing proteins in L. salmonis.
    Myrcia sylvatica essential oil mitigates molecular, biochemical and physiological alterations in Rhamdia quelen under different stress events associated to transport
    Etiane M. H. Saccol - 2018
    The effects of pre-transport handling and addition of essential oil of Myrcia sylvatica (EOMS) during transport on stress pathways activation in Rhamdia quelen were investigated. Fish (n = 400, 25.2 ± 2.9 g) were captured in production ponds and transferred to 100-L tank (density 100 g L− 1). After 24 h, 10 fish were sampled (before transport group). The remaining fish were placed in plastic bags (n = 30 or 32 fish per bag, density 150 g L− 1) containing 5 L of water (control), ethanol (315 μL L− 1, vehicle) or EOMS (25 or 35 μL L− 1), in triplicate, transported for 6 h and sampled (n = 10 animals per group). Indicators of stress and metabolism, as well as mRNA expression of brain hormones were evaluated. Previously, full-length cDNAs, encoding specific corticotropin-releasing hormone (crh) and proopiomelanocortins (pomca and pomcb), were cloned from whole brain of R. quelen. Crh expression increased after 24 h of capture and handling, whereas cortisol and glucose plasmatics enhanced their values in the control group. Transport with EOMS reduced plasma cortisol and lactate levels, while ethanol and EOMS groups increased Na+/K+-ATPase gill activity compared to control. Gene expression of crh, pomcb, prolactin and somatolactin mRNAs were lower after transport with EOMS compared to control. EOMS was able to mitigate the stress pathways activation caused by transport, maintaining a balance in body homeostasis. Thus, EOMS is recommended as sedative in procedures as transport and the pre-transport handling requires greater attention and use of tranquilizers.
    Effect of heifer age on the granulosa cell transcriptome after ovarian stimulation
    David A. Landry - 2018
    Genomic selection is accelerating genetic gain in dairy cattle. Decreasing generation time by using younger gamete donors would further accelerate breed improvement programs. Although ovarian stimulation of peripubertal animals is possible and embryos produced in vitro from the resulting oocytes are viable, developmental competence is lower than when sexually mature cows are used. The aim of the present study was to shed light on how oocyte developmental competence is acquired as a heifer ages. Ten peripubertal Bos taurus Holstein heifers underwent ovarian stimulation cycles at the ages of 8, 11 (mean 10.8) and 14 (mean 13.7) months. Collected oocytes were fertilised in vitro with spermatozoa from the same adult male. Each heifer served as its own control. The transcriptomes of granulosa cells recovered with the oocytes were analysed using microarrays. Differential expression of certain genes was measured using polymerase chain reaction. Principal component analysis of microarray data revealed that the younger the animal, the more distinctive the gene expression pattern. Using ingenuity pathway analysis (IPA) and NetworkAnalyst (, the main biological functions affected in younger donors were identified. The results suggest that cell differentiation, inflammation and apoptosis signalling are less apparent in peripubertal donors. Such physiological traits have been associated with a lower basal concentration of LH.
    Expression Pattern of Individual IFNA Subtypes in Chronic HIV Infection
    Yanpeng Li - 2018
    Interferon-α (IFN-α) plays an important role in HIV pathogenesis. IFN-α consists of 13 individual IFN-α subtypes, which exhibit individual antiviral and immunomodulatory activities in HIV infection. Here, we determined the expression profiles of all IFN-α subtypes in treated and treatment-naive HIV+ patients and their impact on the induction of distinct HIV restriction factors. We collected blood samples of chronic HIV+ patients, which underwent antiretroviral therapy or were treatment-naive, and determined the individual expression levels of different IFN-α subtypes and HIV restriction factors. HIV infection transiently enhanced the expression of IFNA mRNA. The IFN-α response was dominated by the most abundantly expressed subtypes IFNA4, A5, A7, and A14 in all individuals. HIV infection affected the expression pattern of the IFN-α response, in particular for IFNA2 and IFNA16, which were elevated by chronic HIV infection. Elevated expression of HIV restriction factors was observed in chronically HIV-infected patients, which partly decreased during successful antiretroviral treatment. In vitro stimulation of peripheral blood mononuclear cells revealed that IFN-α6, -α14, and -α21 were most effective in inducing the expression of HIV restriction factors. These results indicate that HIV infection induces a specific expression pattern of IFN-α subtypes, which in turn induce the expression of various HIV restriction factors.
    Characterization of a novel variant in siblings with Asparagine Synthetase Deficiency
    Stephanie J. Sacharow - 2018
    Asparagine Synthetase Deficiency (ASD) is a recently described inborn error of metabolism caused by bi-allelic pathogenic variants in the asparagine synthetase (ASNS) gene. ASD typically presents congenitally with microcephaly and severe, often medically refractory, epilepsy. Development is generally severely affected at birth. Tone is abnormal with axial hypotonia and progressive appendicular spasticity. Hyperekplexia has been reported. Neuroimaging typically demonstrates gyral simplification, abnormal myelination, and progressive cerebral atrophy. The present report describes two siblings from consanguineous parents with a homozygous Arg49Gln variant associated with a milder form of ASD that is characterized by later onset of symptoms. Both siblings had a period of normal development before onset of seizures, and development regression. Primary fibroblast studies of the siblings and their parents document that homozygosity for Arg49Gln blocks cell growth in the absence of extracellular asparagine. Functional studies with these cells suggest no impact of the Arg49Gln variant on basal ASNS mRNA or protein levels, nor on regulation of the gene itself. Molecular modelling of the ASNS protein structure indicates that the Arg49Gln variant lies near the substrate binding site for glutamine. Collectively, the results suggest that the Arg49Gln variant affects the enzymatic function of ASNS. The clinical, cellular, and molecular observations from these siblings expand the known phenotypic spectrum of ASD.
    Neonatal Systemic Inflammation Induces Inflammatory Reactions and Brain Apoptosis in a Pathogen-Specific Manner
    Mari Falck - 2018
    After neonatal asphyxia, therapeutic hypothermia (HT) is the only proven treatment option. Although established as a neuroprotective therapy, benefit
    Expression and clinical role of long non-coding RNA in high-grade serous carcinoma
    Natalie Filippov-Levy - 2018
    Objective To profile long non-coding RNA (lncRNA) expression at the various anatomic sites of high-grades serous carcinoma (HGSC) and in effusion-derived exosomes. Methods LncRNA profiling was performed on 60 HGSC specimens, including 10 ovarian tumors, 10 solid metastases and 10 malignant effusions, as well as exosomes from 30 effusion supernatants. Anatomic site-related expression of ESRG, Link-A, GAS5, MEG3, GATS, PVT1 H19, Linc-RoR, HOTAIR and MALAT1 was validated by quantitative PCR and assessed for clinical relevance in a series of 77 HGSC effusions, 40 ovarian carcinomas, 21 solid metastases and 42 supernatant exosomes. Results Significantly different (p < 0.05) expression of 241, 406 and 3634 lncRNAs was found in comparative analysis of the ovarian tumors to solid metastases, effusions and exosomes, respectively. Cut-off at two-fold change in lncRNA expression identified 54 lncRNAs present at the 3 anatomic sites and in exosomes. Validation analysis showed significantly different expression of 5 of 10 lncRNAs in the 4 specimen groups (ESRG, Link-A, MEG3, GATS and PVT1, all p < 0.001). Higher ESRG levels in HGSC effusions were associated with longer overall survival in the entire effusion cohort (p = 0.023) and in patients with pre-chemotherapy effusions tapped at diagnosis (p = 0.048). Higher Link-A levels were associated with better overall (p = 0.015) and progression-free (p = 0.023) survival for patients with post-chemotherapy effusions. Link-A was an independent prognostic marker in Cox multivariate analysis in the latter group (p = 0.045). Conclusions We present the first evidence of differential LncRNA expression as function of anatomic site in HGSC. LncRNA levels in HGSC effusions are candidate prognostic markers.
    Trichloroethylene perturbs HNF4a expression and activity in the developing chick heart
    Alondra P. Harris - 2018
    Exposure to trichloroethylene (TCE) is linked to formation of congenital heart defects in humans and animals. Prior interactome analysis identified the transcription factor, Hepatocyte Nuclear Factor 4 alpha (HNF4a), as a potential target of TCE exposure. As a role for HNF4a is unknown in the heart, we examined developing avian hearts for HNF4a expression and for sensitivity to TCE and the HNF4a agonist, Benfluorex. In vitro analysis using a HNF4a reporter construct showed both TCE and HFN4a to be antagonists of HNF4a-mediated transcription at the concentrations tested. HNF4a mRNA is expressed transiently in the embryonic heart during valve formation and cardiac development. Embryos were examined for altered gene expression in the presence of TCE or Benfluorex. TCE altered expression of selected mRNAs including HNF4a, TRAF6 and CYP2C45. There was a transition between inhibition and induction of marker gene expression in embryos as TCE concentration increased. Benfluorex was largely inhibitory to selected markers. Echocardiography of exposed embryos showed reduced cardiac function with both TCE and Benfluorex. Cardiac contraction was reduced by 29% and 23%, respectively at 10 ppb. The effects of TCE and Benfluorex on autocrine regulation of HNF4a, selected markers and cardiac function argue for a functional interaction of TCE and HNF4a. Further, the dose-sensitive shift between inhibition and induction of marker expression may explain the nonmonotonic-like dose response observed with TCE exposure in the heart.
    CXCR4/CXCR7/CXCL12 axis promotes an invasive phenotype in medullary thyroid carcinoma
    Thomas A. Werner - 2017
    CXCR4/CXCR7/CXCL12 axis promotes an invasive phenotype in medullary thyroid carcinoma
    Effect of different salinities on gene expression and activity of digestive enzymes in the thick-lipped grey mullet (Chelon labrosus)
    I. M. Pujante - 2017
    The effects of different environmental salinities (0, 12, 40, and 55 ppt) on pepsinogen 2 (pga2), trypsinogen 2 (try2), chymotrypsinogen (ctr), and pancreatic alpha-amylase (amy2a) gene expression, and on the total activities of their corresponding enzymes, were assessed in Chelon labrosus juveniles, after their corresponding full-complementary DNA sequences were cloned. Furthermore, the quantitative effect of different salinities on the hydrolysis of feed protein by fish digestive enzymes was evaluated using an in vitro system. Relative pga2 expression levels were significantly higher in animals maintained at 12 ppt, while a significantly higher gene expression level for ctr and try2 was observed at 40 ppt. amy2a gene expression showed its maximum level at 40 ppt and the lowest at 55 ppt. A significant reduction in the activity of amylase with the increase in salinity was observed, whereas the maximum activity for alkaline proteases was observed in individuals maintained at 40 ppt. A negative effect of high salinity on the action of proteases was confirmed by the in vitro assay, indicating a decreased efficiency in the digestive function in C. labrosus when maintained at high environmental salinities. Nevertheless, individuals can live under different environmental salinities, even though gene expression is different and the enzymatic activities are not maintained at the highest studied salinity. Therefore, compensatory mechanisms should be in place. Results are discussed on the light of the importance as a new species for aquaculture.
    Comparative transcriptome analysis reveals conserved branching morphogenesis related genes involved in chamber formation of catfish swimbladder
    Qiang Fu - 2017
    The swimbladder is an internal gas-filled organ in teleosts. Its major function is to regulate buoyancy. Swimbladder exhibits great variations in size, shape, number of compartments or chambers among teleosts. However, the genomic control of swimbladder variations is unknown. Channel catfish (Ictalurus punctatus), blue catfish (Ictalurus furcatus), and their F1 hybrids of female channel catfish x male blue catfish (C×B hybrid catfish) provide a good model to investigate the swimbladder morphology, because channel catfish possess a single-chambered swimbladder whereas blue catfish possess a bi-chambered swimbladder; and C×B hybrid catfish possess a bi-chambered swimbladder but with significantly reduced posterior chamber. Here we determined the transcriptional profiles of swimbladder from channel catfish, blue catfish, and C×B hybrid catfish. We examined their transcriptomes at both the fingerling and adult stages. Through comparative transcriptome analysis, approximately 4,000 differentially expressed genes (DEGs) were identified. Among these DEGs, members of the Wnt signaling pathway (wnt1, wnt2, nfatc1, rac2), Hedgehog signaling pathway (shh), and growth factors (fgf10, igf-1) were identified. As these genes were known to be important for branching morphogenesis of mammalian lung and of mammary glands, their association with budding of posterior chamber primordium and progressive development of bi-chambered swimbladder in fish suggested that these branching morphogenesis related genes and their functions in branching are evolutionarily conserved across a broad spectrum of species.
    Phenotypic and functional characterization of porcine bone marrow monocyte subsets
    Fernández-Caballero - 2017
    Monocytes comprise several subsets with distinct phenotypes and functional capacities. Based on CD163 expression, two major monocyte subsets can be discriminated in the porcine bone marrow. The CD163+ cells expressed higher levels of SLA-DR, Siglec-1, CD11R1 and CD16 when compared to CD163- monocytes, whereas no remarkable differences were observed in the expression of other markers analyzed. Gene expression analysis showed differential expression of several chemokine receptor and TLR genes. Both subsets phagocytosed microspheres with similar efficiency. However, CD163- cells tended to produce higher levels of ROS in response to PMA, whereas CD163+ cells were more efficient in endocytosing and processing antigens (DQ-OVA). CD163- monocytes produced higher levels of TNF-α and IL-10 than CD163+ cells when stimulated with LPS or Imiquimod. Both subsets produced similar amounts of IL-8 in response to LPS; however, CD163+ cells produced more IL-8 after Imiquimod stimulation. Whether these subsets represent different developmental stages, and how are they related remain to be investigated.
    Transcriptomic difference in bovine blastocysts following vitrification and slow freezing at morula stage
    Alisha Gupta - 2017
    Cryopreservation is known for its marked deleterious effects on embryonic health. Bovine compact morulae were vitrified or slow-frozen, and post-warm morulae were cultured to the expanded blastocyst stage. Blastocysts developed from vitrified and slow-frozen morulae were subjected to microarray analysis and compared with blastocysts developed from unfrozen control morulae for differential gene expression. Morula to blastocyst conversion rate was higher (P < 0.05) in control (72%) and vitrified (77%) than in slow-frozen (34%) morulae. Total 20 genes were upregulated and 44 genes were downregulated in blastocysts developed from vitrified morulae (fold change ≥ ± 2, P < 0.05) in comparison with blastocysts developed from control morulae. In blastocysts developed from slow-frozen morulae, 102 genes were upregulated and 63 genes were downregulated (fold change ≥ ± 1.5, P < 0.05). Blastocysts developed from vitrified morulae exhibited significant changes in gene expression mainly involving embryo implantation (PTGS2, CALB1), lipid peroxidation and reactive oxygen species generation (HSD3B1, AKR1B1, APOA1) and cell differentiation (KRT19, CLDN23). However, blastocysts developed from slow-frozen morulae showed changes in the expression of genes related to cell signaling (SPP1), cell structure and differentiation (DCLK2, JAM2 and VIM), and lipid metabolism (PLA2R1 and SMPD3). In silico comparison between blastocysts developed form vitrified and slow-frozen morulae revealed similar changes in gene expression as between blastocysts developed from vitrified and control morulae. In conclusion, blastocysts developed form vitrified morulae demonstrated better post-warming survival than blastocysts developed from slow-frozen morulae but their gene expression related to lipid metabolism, steroidogenesis, cell differentiation and placentation changed significantly (≥ 2 fold). Slow freezing method killed more morulae than vitrification but those which survived up to blastocyst stage did not express ≥ 2 fold change in their gene expression as compared with blastocysts from control morulae.
    Carbohydrates digestion and metabolism in the spiny lobster (Panulirus argus): biochemical indication for limited carbohydrate utilization
    Leandro Rodríguez-Viera - 2017
    As other spiny lobsters, Panulirus argus is supposed to use preferentially proteins and lipids in energy metabolism, while carbohydrates are well digested but poorly utilized. The aim of this study was to evaluate the effect of dietary carbohydrate level on digestion and metabolism in the spiny lobster P. argus. We used complementary methodologies such as post-feeding flux of nutrients and metabolites, as well as measurements of α-amylase expression and activity in the digestive tract. Lobsters readily digested and absorbed carbohydrates with a time-course that is dependent on their content in diet. Lobster showed higher levels of free glucose and stored glycogen in different tissues as the inclusion of wheat flour increased. Modifications in intermediary metabolism revealed a decrease in amino acids catabolism coupled with a higher use of free glucose as carbohydrates rise up to 20%. However, this effect seems to be limited by the metabolic capacity of lobsters to use more than 20% of carbohydrates in diets. Lobsters were not able to tightly regulate α-amylase expression according to dietary carbohydrate level but exhibited a marked difference in secretion of this enzyme into the gut. Results are discussed to highlight the limitations to increasing carbohydrate utilization by lobsters. Further growout trials are needed to link the presented metabolic profiles with phenotypic outcomes.
    Increased Chalcone Synthase (CHS) expression is associated with dicamba resistance in Kochia scoparia
    Dean J. Pettinga - 2017
    BACKGROUND Resistance to the synthetic auxin herbicide dicamba is increasingly problematic in Kochia scoparia. The resistance mechanism in an inbred dicamba-resistant K. scoparia line (9425R) was investigated using physiological and transcriptomics (RNA-Seq) approaches. RESULTS No differences were found in dicamba absorption or metabolism between 9425R and a dicamba-susceptible line, but 9425R was found to have significantly reduced dicamba translocation. Known auxin-responsive genes ACC synthase (ACS) and indole-3-acetic acid amino synthetase (GH3) were transcriptionally induced following dicamba treatment in dicamba-susceptible K. scoparia but not in 9425R. Chalcone synthase (CHS), the gene regulating synthesis of the flavonols quertecin and kaemperfol, was found to have two-fold higher transcription in 9425R both without and 12 h after dicamba treatment. Increased CHS transcription co-segregated with dicamba resistance in a forward genetics screen using an F2 population. CONCLUSION Prior work has shown that the flavonols quertecin and kaemperfol compete with auxin for intercellular movement and vascular loading via ATP-binding cassette subfamily B (ABCB) membrane transporters. The results of this study support a model in which constitutively increased CHS expression in the meristem produces more flavonols that would compete with dicamba for intercellular transport by ABCB transporters, resulting in reduced dicamba translocation.
    CmpX Affects Virulence in Pseudomonas aeruginosa Through the Gac/Rsm Signaling Pathway and by Modulating c-di-GMP Levels
    Anjali Y. Bhagirath - 2017
    Pseudomonas aeruginosa is an ubiquitous organism which is able to infect and colonize many types of hosts including humans. Colonization of P. aeruginosa in chronic infections leads to the formation of biofilms, which are difficult to eradicate. P. aeruginosa is capable of regulating its virulence factors in response to external environment triggers and its signaling mechanism involves two-component regulatory systems and small molecules such as bis-(3′–5′)-cyclic dimeric guanosine monophosphate. PA1611-RetS-GacS/A-RsmA/Y/Z is a key regulatory pathway in P. aeruginosa that controls several virulence factors and biofilm formation. We have previously identified a conserved cytoplasmic membrane protein cmpX (PA1775), as a regulator for PA1611 expression. In this study, we demonstrate that cmpX regulates virulence, and controls biofilm formation in P. aeruginosa as well as provide evidence showing that cmpX affects Gac/Rsm pathway, possibly by modulating intra-cellular c-di-GMP levels. A cmpX knockout showed significantly decreased promoter activity of exoS (PA1362) and increased activity of small RNA, RsmY. As compared to the wild-type PAO1, cmpX mutant had elevated intracellular c-di-GMP level as measured indirectly by cdrA (PA4625) activity, as well as increased expression of wspR (PA3702), a c-di-GMP synthase. The transcription of the major outer membrane porin gene oprF (PA1777), and sigma factor sigX (PA1776) was also significantly decreased in the cmpX mutant. Biolog phenotype microarray experiments further indicated that the cmpX knockout mutant had increased sensitivity to membrane detergents and antibiotics such as lauryl sulfobetaine, tobramycin, and vancomycin. These results point to a significant role of cmpX in P. aeruginosa virulence and colonization.
    Unraveling vasotocinergic, isotocinergic and stress pathways after food deprivation and high stocking density in the gilthead sea bream
    Arleta Krystyna Skrzynska - 2017
    The influence of chronic stress, induced by food deprivation (FD) and/or high stocking density (HSD), was assessed on stress, vasotocinergic and isotocinergic pathways of the gilthead sea bream (Sparus aurata). Fish were randomly assigned to one of the following treatments: (1) fed at low stocking density (LSD-F; 5kg·m−3); (2) fed at high stocking density (HSD-F, 40kg·m−3); (3) food-deprived at LSD (LSD-FD); and (4) food-deprived at HSD (HSD-FD). After 21days, samples from plasma, liver, hypothalamus, pituitary and head-kidney were collected. Both stressors (FD and HSD) induced a chronic stress situation, as indicated by the elevated cortisol levels, the enhancement in corticotrophin releasing hormone (crh) expression and the down-regulation in corticotrophin releasing hormone binding protein (crhbp) expression. Changes in plasma and liver metabolites confirmed a metabolic adjustment to cope with energy demand imposed by stressors. Changes in avt and it gene expression, as well as in their specific receptors (avtrv1a, avtrv2 and itr) at central (hypothalamus and pituitary) and peripheral (liver and head-kidney) levels, showed that vasotocinergic and isotocinergic pathways are involved in physiological changes induced by FD or HSD, suggesting that different stressors are handled through different stress pathways in S. aurata.
    Concomitant external pneumatic compression treatment with consecutive days of high intensity interval training reduces markers of proteolysis
    Cody T. Haun - 2017
    PurposeTo compare the effects of external pneumatic compression (EPC) and sham when used concurrently with high intensity interval training (HIIT) on performance-related outcomes and recovery-related molecular measures.MethodsEighteen recreationally endurance-trained male participants (age: 21.6 ± 2.4 years, BMI: 25.7 ± 0.5 kg/m2, VO2peak: 51.3 ± 0.9 mL/kg/min) were randomized to balanced sham and EPC treatment groups. Three consecutive days of HIIT followed by EPC/sham treatment (Days 2–4) and 3 consecutive days of recovery (Days 5–7) with EPC/sham only on Days 5–6 were employed. Venipuncture, flexibility and pressure-to-pain threshold (PPT) measurements were made throughout. Vastus lateralis muscle was biopsied at PRE (i.e., Day 1), 1-h post-EPC/sham treatment on Day 2 (POST1), and 24-h post-EPC/sham treatment on Day 7 (POST2). 6-km run time trial performance was tested at PRE and POST2.ResultsNo group × time interaction was observed for flexibility, PPT, or serum measures of creatine kinase (CK), hsCRP, and 8-isoprostane. However, there was a main effect of time for serum CK (p = 0.005). Change from PRE in 6-km run times at POST2 were not significantly different between groups. Significant between-groups differences existed for change from PRE in atrogin-1 mRNA (p = 0.018) at the POST1 time point (EPC: − 19.7 ± 8.1%, sham: + 7.7 ± 5.9%) and atrogin-1 protein concentration (p = 0.013) at the POST2 time point (EPC: − 31.8 ± 7.5%, sham: + 96.0 ± 34.7%). In addition, change from PRE in poly-Ub proteins was significantly different between groups at both the POST1 (EPC: − 26.0 ± 10.3%, sham: + 34.8 ± 28.5%; p = 0.046) and POST2 (EPC: − 33.7 ± 17.2%, sham: + 21.4 ± 14.9%; p = 0.037) time points.ConclusionsEPC when used concurrently with HIIT and in subsequent recovery days reduces skeletal muscle markers of proteolysis.
    Exercise training attenuates experimental autoimmune encephalomyelitis by peripheral immunomodulation rather than direct neuroprotection
    Ofira Einstein - 2017
    Conflicting results exist on the effects of exercise training (ET) on Experimental Autoimmune Encephalomyelitis (EAE), nor is it known how exercise impacts on disease progression. We examined whether ET ameliorates the development of EAE by modulating the systemic immune system or exerting direct neuroprotective effects on the CNS. Healthy mice were subjected to 6weeks of motorized treadmill running. The Proteolipid protein (PLP)-induced transfer EAE model in mice was utilized. To assess effects of ET on systemic autoimmunity, lymph-node (LN)-T cells from trained- vs. sedentary donor mice were transferred to naïve recipients. To assess direct neuroprotective effects of ET, PLP-reactive LN-T cells were transferred into recipient mice that were trained prior to EAE transfer or to sedentary mice. EAE severity was assessed in vivo and the characteristics of encephalitogenic LN-T cells derived from PLP-immunized mice were evaluated in vitro. LN-T cells obtained from trained mice induced an attenuated clinical and pathological EAE in recipient mice vs. cells derived from sedentary animals. Training inhibited the activation, proliferation and cytokine gene expression of PLP-reactive T cells in response to CNS-derived autoantigen, but strongly enhanced their proliferation in response to Concanavalin A, a non-specific stimulus. However, there was no difference in EAE severity when autoreactive encephalitogenic T cells were transferred to trained vs. sedentary recipient mice. ET inhibits immune system responses to an auto-antigen to attenuate EAE, rather than generally suppressing the immune system, but does not induce a direct neuro-protective effect against EAE.
    In roots of Arabidopsis thaliana, the damage-associated molecular pattern AtPep1 is a stronger elicitor of immune signalling than flg22 or the chitin heptamer
    Lorenzo Poncini - 2017
    Plants interpret their immediate environment through perception of small molecules. Microbe-associated molecular patterns (MAMPs) such as flagellin and chitin are likely to be more abundant in the rhizosphere than plant-derived damage-associated molecular patterns (DAMPs). We investigated how the Arabidopsis thaliana root interprets MAMPs and DAMPs as danger signals. We monitored root development during exposure to increasing concentrations of the MAMPs flg22 and the chitin heptamer as well as of the DAMP AtPep1. The tissue-specific expression of defence-related genes in roots was analysed using a toolkit of promoter::YFPN lines reporting jasmonic acid (JA)-, salicylic acid (SA)-, ethylene (ET)- and reactive oxygen species (ROS)- dependent signalling. Finally, marker responses were analysed during invasion by the root pathogen Fusarium oxysporum. The DAMP AtPep1 triggered a stronger activation of the defence markers compared to flg22 and the chitin heptamer. In contrast to the tested MAMPs, AtPep1 induced SA- and JA-signalling markers in the root and caused a severe inhibition of root growth. Fungal attack resulted in a strong activation of defence genes in tissues close to the invading fungal hyphae. The results collectively suggest that AtPep1 presents a stronger danger signal to the Arabidopsis root than the MAMPs flg22 and chitin heptamer.
    Sex-specific phenotypes and metabolism-related gene expression in juvenile sticklebacks
    Alberto Velando - 2017
    To fully understand the evolution of sexual dimorphism, it is necessary to study how genetic and developmental systems function to generate sex-specific phenotype as well as sex-specific selection. Males and females show different patterns of energy storage and mitochondrial metabolism from early stages of life, and this may underlie sex-specific developmental pathway to shape both juvenile and adult phenotype. Here, we examined sex-specific relationships between juvenile morphology and behavior, and transcriptional profiles of 4 candidate genes related to mitochondrial function in the 3-spined stickleback. This study provides, for the first time to our knowledge, evidence for sex differences in melanin pigmentation and antipredator behavior as well as the expression of mitochondria-related genes in juvenile sticklebacks. Males were paler and bolder, and overexpressed genes involved in mitochondrial respiration and antioxidant enzymes compared to females. Relationships between phenotypic traits and gene expression were also sex-specific. In general, females showed stronger positive correlations between body size or pigmentation and the expression of genes involved in mitochondrial biogenesis and activity. In both sexes, more fearful individuals overexpressed those genes. Our results suggest that mitochondrial function may either facilitate or constrain sex-specific responses to selection on dimorphic phenotype, possibly generating intralocus sexual conflict on the transcriptional regulation of mito-nuclear genes during ontogeny. This study highlights that mitochondrial regulation plays an important role in the process of phenotypic differentiation between the 2 sexes from early stages of life before apparent sexual dimorphism appears.
    More than just antibodies: Protective mechanisms of a mucosal vaccine against fish pathogen Flavobacterium columnare
    Dongdong Zhang - 2017
    A recently developed attenuated vaccine for Flavobacterium columnare has been demonstrated to provide superior protection for channel catfish, Ictalurus punctatus, against genetically diverse columnaris isolates. We were interested in examining the mechanisms of this protection by comparing transcriptional responses to F. columnare challenge in vaccinated and unvaccinated juvenile catfish. Accordingly, 58 day old fingerling catfish (28 days post-vaccination or unvaccinated control) were challenged with a highly virulent F. columnare isolate (BGSF-27) and gill tissues collected pre-challenge (0 h), and 1 h and 2 h post infection, time points previously demonstrated to be critical in early host-pathogen interactions. Following RNA-sequencing and transcriptome assembly, differential expression (DE) analysis within and between treatments revealed several patterns and pathways potentially underlying improved survival of vaccinated fish. Most striking was a pattern of dramatically higher basal expression of an array of neuropeptides (e.g. somatostatin), hormones, complement factors, and proteases at 0 h in vaccinated fish. Previous studies indicate these are likely the preformed mediators of neuroendocrine cells and/or eosinophilic granular (mast-like) cells within the fish gill. Following challenge, these elements fell to almost undetectable levels (>100-fold downregulated) by 1 h in vaccinated fish, suggesting their rapid release and/or cessation of synthesis following degranulation. Concomitantly, levels of pro-inflammatory cytokines (IL-1b, IL-8, IL-17) were induced in unvaccinated fish. In contrast, in vaccinated catfish, we observed widespread induction of genes needed for collagen deposition and tissue remodeling. Taken together, our results indicate an important component of vaccine protection in fish mucosal tissues may be the sensitization, proliferation and arming of resident secretory cells in the period between primary and secondary challenge.
    Di(2-ethylhexyl) phthalate and diethyl phthalate disrupt lipid metabolism, reduce fecundity and shortens lifespan of Caenorhabditis elegans
    Ajay Pradhan - 2017
    The widespread use of phthalates is of major concern as they have adverse effects on many different physiological functions, including reproduction, metabolism and cell differentiation. The aim of this study was to compare the toxicity of the widely-used di (2-ethydlhexyl) phthalate (DEHP) with its substitute, diethyl phthalate (DEP). We analyzed the toxicity of these two phthalates using Caenorhabditis elegans as a model system. Gene expression analysis following exposure during the L1 to young adult stage showed that DEHP and DEP alter the expression of genes involved in lipid metabolism and stress response. Genes associated with lipid metabolism, including fasn-1, pod-2, fat-5, acs-6 and sbp-1, and vitellogenin were upregulated. Among the stress response genes, ced-1 wah-1, daf-21 and gst-4 were upregulated, while ctl-1, cdf-2 and the heat shock proteins (hsp-16.1, hsp-16.48 and sip-1) were downregulated. Lipid staining revealed that DEHP significantly increased lipid content following 1 μM exposure, however, DEP required 10 μM exposure to elicit an effect. Both DEHP and DEP reduced the fecundity at 1 μM concentration. Lifespan analysis indicated that DEHP and DEP reduced the average lifespan from 14 days in unexposed worms to 13 and 12 days, respectively. Expression of lifespan associated genes showed a correlation to shortened lifespan in the exposed groups. As reported previously, our data also indicates that the banned DEHP is toxic to C. elegans, however its substitute DEP has not been previously tested in this model organism and our data revealed that DEP is equally potent as DEHP in regulating C. elegans physiological functions.
    Impaired fertility and motor function in a zebrafish model for classic galactosemia
    Jo M. Vanoevelen - 2017
    Classic galactosemia is a genetic disorder of galactose metabolism, caused by severe deficiency of galactose-1-phosphate uridylyltransferase (GALT) enzyme activity due to mutations of the GALT gene. Its pathogenesis is still not fully elucidated, and a therapy that prevents chronic impairments is lacking. In order to move research forward, there is a high need for a novel animal model, which allows organ studies throughout development and high-throughput screening of pharmacologic compounds. Here, we describe the generation of a galt knockout zebrafish model and present its phenotypical characterization. Using a TALEN approach, a galt knockout line was successfully created. Accordingly, biochemical assays confirm essentially undetectable galt enzyme activity in homozygotes. Analogous to humans, galt knockout fish accumulate galactose-1-phosphate upon exposure to exogenous galactose. Furthermore, without prior exposure to exogenous galactose, they exhibit reduced motor activity and impaired fertility (lower egg quantity per mating, higher number of unsuccessful crossings), resembling the human phenotype(s) of neurological sequelae and subfertility. In conclusion, our galt knockout zebrafish model for classic galactosemia mimics the human phenotype(s) at biochemical and clinical levels. Future studies in our model will contribute to improved understanding and management of this disorder.
    Tissue-engineered magnetic cell sheet patches for advanced strategies in tendon regeneration
    Ana I. Gonçalves - 2017
    Tendons are powerful 3D biomechanically structures combining a few cells in an intrincated and highly hierarchical niche environment. When tendon homeostasis is compromised, restoration of functionality upon injury is limited and requires alternatives to current augmentation or replacement strategies. Cell sheet technologies are a powerful tool for the fabrication of living extracellular-rich patches towards regeneration of tenotopic defects. Thus, we originally propose the development of magnetically responsive tenogenic patches through magnetic cell sheet (magCSs) technology that enable the remote control upon implantation of the tendon-mimicking constructs. A Tenomodulin positive (TNMD+) subpopulation of cells sorted from a crude population of human adipose stem cells (hASCs) previously identified as being prone to tenogenesis was selected for the magCSs patch construction. We investigated the stability, the cellular co-location of the iron oxide nanoparticles (MNPs), as well as the morphology and mechanical properties of the developed magCSs. Moreover, the expression of tendon markers and collagenous tendon-like matrix were further assessed under the actuation of an external magnetic field. Overall, this study confirms the potential to bioengineer tendon patches using a magnetic cell sheet construction with magnetic responsiveness, good mechanoelastic properties and a tenogenic prone stem cell population envisioning cell-based functional therapies towards tendon regeneration. The concept of magnetic force-based tissue engineering may assist the development of innovative solutions to treat tendon (or other tissues) disorders upon remote control of biological processes as cell migration or differentiation. Herein, we originally fabricated magnetic responsive cell sheets (magCSs) with a Tenomodulin positive subpopulation of adipose tissue derived stem cells identified to commit to the tenogenic lineage. To the best of authors knowledge, this is the first time a tendon oriented strategy resorting on magCSsis reported. Moreover, the promising role of tenogenic living constructs fabricated as magnetically responsive ECM-rich patches is highlighted, envisioning the stimulation of endogenous regenerative mechanisms. Altogether, these findings contribute to future stem cell studies and their translation toward tendon therapies.
    Mechanisms of pathogen virulence and host susceptibility in virulent Aeromonas hydrophila infections of channel catfish (Ictalurus punctatus)
    Eric Peatman - 2017
    An emerging pathotype of Aeromonas hydrophila (vAh) has been responsible for widespread farm losses in the US catfish industry over the last decade. While our genetic and biochemical understanding of vAh has been greatly enhanced in this time frame, our ability to reliably induce the disease in the laboratory has remained limited. Taking cues from observed farm conditions associated with outbreaks, here we perturbed iron scavenging dynamics and catfish feeding status. Addition of a xenosiderophore, deferoxamine mesylate (DFO), to vAh cultures prior to immersion challenge significantly increased virulence in several vAh isolates but not in a non-epidemic strain. DFO addition did not impact vAh growth dynamics or perturb iron-sensitive gene pathways, but did significantly enhance hemolysis of catfish blood. Furthermore, hours between last feeding and immersion challenge (postprandial status), was observed to be a critical determinant of catfish susceptibility. Fish with a full gastrointestinal tract had significantly lower survival than those in a fasted state, and this effect was cumulative with that of DFO-enhanced vAh virulence. Taken together, our results not only provide a more robust challenge model, they offer actionable insights into pond level host-pathogen-environmental interactions potentially underlying vAh pathogenesis.
    Data supporting the functional role of Eleven-nineteen Lysine-rich Leukemia 3 (ELL3) in B cell lymphoma cell line cells
    Lou-Ella M. M. Alexander - 2017
    The data presented here are related to the research article entitled “Selective expression of the transcription elongation factor ELL3 in B cells prior to ELL2 drives proliferation and survival” (Alexander et al., 2017) [1]. The cited research article characterizes Eleven-nineteen Lysine-rich Leukemia 3 (ELL3) expression in the B cell compartment and functional dependence in B lymphoma cell lines. This data report describes the mRNA expression pattern in a panel of cell lines representing the B cell compartment, supplementing the protein expression data presented in the associated research report. In addition, a reanalysis is presented of publicly available mRNA expression data from primary murine B cells to reveal dynamic regulation of the ELL family members post LPS stimulation (Barwick et al., 2016) [2]. The effect of ELL3 depletion on cell morphology, latent Epstein Barr Virus (EBV) lytic replication and differentiation markers in a Burkitt's lymphoma (BL) cell line cells are presented.
    Susceptibility of Human Cumulus Cells to Bisphenol A In Vitro
    Abdallah Mansur - 2017
    Bisphenol A (BPA) is detectable in follicular fluid. However, the effect of BPA exposure on human cumulus cells (CC) that surround the oocyte and are crucial for oocyte competence has been largely unexplored. We exposed primary cultures of CC to increasing concentrations of BPA [0,0.002, 0.02 and 20 μg/mL] and tested the effects of BPA on the expression of genes associated with apoptosis using quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR); we also assessed the effect of BPA on apoptosis by staining with anti-caspase 3. Exposure to 20 μg/mL BPA led to significantly decreased expression of CDC20, BUB1 B and HAS2 (p < 0.03), increased expression of TRIB3 and LUM (p ≤ 0.005), and increased frequency of cells positive for anti-CASP3 (p = 0.03), compared to control. Our results imply that BPA may lead to ovarian toxicity by increasing CC apoptosis and provide an important molecular mechanism for the effect of BPA on human CC in vitro.
    The role of Tec kinase signaling pathways in the development of Mallory Denk Bodies in balloon cells in alcoholic hepatitis
    N. Afifiyan - 2017
    Several research strategies have been used to study the pathogenesis of alcoholic hepatitis (AH). These strategies have shown that various signaling pathways are the target of alcohol in liver cells. However, few have provided specific mechanisms associated with Mallory-Denk Bodies (MDBs) formed in Balloon cells in AH. The formation of MDBs in these hepatocytes is an indication that the mechanisms of protein quality control have failed. The MDB is the result of aggregation and accumulation of proteins in the cytoplasm of balloon degenerated liver cells. To understand the mechanisms that failed to degrade and remove proteins in the hepatocyte from patients suffering from alcoholic hepatitis, we investigated the pathways that showed significant up regulation in the AH liver biopsies compared to normal control livers (Liu et al., 2015). Analysis of genomic profiles of AH liver biopsies and control livers by RNA-seq revealed different pathways that were up regulated significantly. In this study, the focus was on Tec kinase signaling pathways and the genes that significantly interrupt this pathway. Quantitative PCR and immunofluorescence staining results, indicated that several genes and proteins are significantly over expressed in the livers of AH patients that affect the Tec kinase signaling to PI3K which leads to activation of Akt and its downstream effectors.
    Didox (3,4-dihydroxybenzohydroxamic acid) suppresses IgE-mediated mast cell activation through attenuation of NFκB and AP-1 transcription
    Jamie Josephine Avila McLeod - 2017
    Mast cell activation via the high-affinity IgE receptor (FcεRI) elicits production of inflammatory mediators central to allergic disease. As a synthetic antioxidant and a potent ribonucleotide reductase (RNR) inhibitor, Didox (3,4-dihyroxybenzohydroxamic acid) has been tested in clinical trials for cancer and is an attractive therapeutic for inflammatory disease. We found that Didox treatment of mouse bone marrow-derived mast cells (BMMC) reduced IgE-stimulated degranulation and cytokine production, including IL-6, IL-13, TNF and MIP-1a (CCL3). These effects were consistent using BMMC of different genetic backgrounds and peritoneal mast cells. While the RNR inhibitor hydroxyurea had little or no effect on IgE-mediated function, high concentrations of the antioxidant N-acetylcysteine mimicked Didox-mediated suppression. Furthermore, Didox increased expression of the antioxidant genes superoxide dismutase and catalase, and suppressed DCFH-DA fluorescence, indicating reduced reactive oxygen species production. Didox effects were not due to changes in FcεRI expression or cell viability, suggesting it inhibits signaling required for inflammatory cytokine production. In support of this, we found that Didox reduced FcεRI-mediated AP-1 and NFκB transcriptional activity. Finally, Didox suppressed mast cell-dependent, IgE-mediated passive systemic anaphylaxis in vivo. These data demonstrate the potential use for Didox as a means of antagonizing mast cell responses in allergic disease.
    Selective expression of the transcription elongation factor ELL3 in B cells prior to ELL2 drives proliferation and survival
    Lou-Ella M. M. Alexander - 2017
    B cell activation is dependent on a large increase in transcriptional output followed by focused expression on secreted immunoglobulin as the cell transitions to an antibody producing plasma cell. The rapid transcriptional induction is facilitated by the release of poised RNA pol II into productive elongation through assembly of the super elongation complex (SEC). We report that a SEC component, the Eleven -nineteen Lysine-rich leukemia (ELL) family member 3 (ELL3) is dynamically up-regulated in mature and activated human B cells followed by suppression as B cells transition to plasma cells in part mediated by the transcription repressor PRDM1. Burkitt’s lymphoma and a sub-set of Diffuse Large B cell lymphoma cell lines abundantly express ELL3. Depletion of ELL3 in the germinal center derived lymphomas results in severe disruption of DNA replication and cell division along with increased DNA damage and cell death. This restricted utilization and survival dependence reveal a key step in B cell activation and indicate a potential therapeutic target against B cell lymphoma’s with a germinal center origin.
    In silico analysis and effects of environmental salinity in the expression and activity of digestive α-amylase and trypsins from the euryhaline crab Neohelice granulata
    Antonela Asaro - 2017
    Studies on molecular characteristics and modulation of expression of α-amylase and trypsin in the hepatopancreas of intertidal euryhaline crabs are lacking. In this work, we cloned and studied by in silico approaches the characteristics of cDNA sequences for α-amylase and two trypsins isoforms, as well as the effect of environmental salinity on gene expression and protein activities in hepatopancreas of Neohelice granulata (Dana,1852), as a good invertebrate model species. The cDNA sequence of -amylase is 1,637 bp long, encoding 459 amino acid residues. Trypsin 1 and 2 are 689 bp and 1,174 bp long, encoding 204 and 151 amino acid residues, respectively. Multiple sequence alignment of deduced protein sequences revealed the presence of conserved motifs found in other invertebrates. In crabs acclimated at 37 psu (hypo-regulation),α-amylase mRNA level and total pancreatic amylase activity were higher than at 10 psu (hyper-regulation) and 35 psu (osmoconformation). Trypsin 1 mRNA levels increased at 37 psu wh...
    Isobutanol production in Synechocystis PCC 6803 using heterologous and endogenous alcohol dehydrogenases
    Rui Miao - 2017
    Isobutanol is a flammable compound that can be used as a biofuel due to its high energy density and suitable physical and chemical properties. In this study, we examined the capacity of engineered strains of Synechocystis PCC 6803 containing the α-ketoisovalerate decarboxylase from Lactococcus lactis and different heterologous and endogenous alcohol dehydrogenases (ADH) for isobutanol production. A strain expressing an introduced kivd without any additional copy of ADH produced 3 mg L−1 OD750−1 isobutanol in 6 days. After the cultures were supplemented with external addition of isobutyraldehyde, the substrate for ADH, 60.8 mg L−1 isobutanol was produced after 24 h when OD750 was 0.8. The in vivo activities of four different ADHs, two heterologous and two putative endogenous in Synechocystis, were examined and the Synechocystis endogenous ADH encoded by slr1192 showed the highest efficiency for isobutanol production. Furthermore, the strain overexpressing the isobutanol pathway on a self-replicating vector with the strong Ptrc promoter showed significantly higher gene expression and isobutanol production compared to the corresponding strains expressing the same operon introduced on the genome. Hence, this study demonstrates that Synechocystis endogenous AHDs have a high capacity for isobutanol production, and identifies kivd encoded α-ketoisovalerate decarboxylase as one of the likely bottlenecks for further isobutanol production.
    Choroid plexus-cerebrospinal fluid route for monocyte-derived macrophages after stroke
    Ruimin Ge - 2017
    Choroid plexus (CP) supports the entry of monocyte-derived macrophages (MDMs) to the central nervous system in animal models of traumatic brain injury, spinal cord injury, and Alzheimer’s disease. Whether the CP is involved in the recruitment of MDMs to the injured brain after ischemic stroke is unknown.
    The roles of NF-κB and ROS in regulation of pro-inflammatory mediators of inflammation induction in LPS-stimulated zebrafish embryos
    Eun-Yi Ko - 2017
    In this study, the roles of reactive oxygen species (ROS) and NF-κB on inflammation induction in lipopolysaccharide (LPS)-stimulated zebrafish embryos were evaluated using N-acetyl-l-cysteine (NAC) and pyrrolidine dithiocarbamate (PDTC), specific inhibitors of ROS and NF-κB, respectively. LPS-stimulated zebrafish embryos showed increasing production of NO and ROS and expression of iNOS and COX-2 protein, compared to a control group without LPS. However, NAC significantly inhibited production of NO and ROS and markedly suppressed expression of iNOS and COX-2 protein in LPS-stimulated zebrafish embryos. The mRNA expressions of NF-κB such as p65NF-κB and IκB-A were significantly increased after LPS stimulation, whereas PDTC attenuated mRNA expression of NF-κB. IκB was suppressed by PDTC, but not significantly. PDTC also inhibited production of NO and reduced expression of iNOS and COX-2 protein in LPS-stimulated zebrafish embryos. Taken together, these results indicated that LPS increases pro-inflammatory mediators in zebrafish embryos through ROS and NF-κB regulation.
    Alternative strategy for visceral leishmaniosis control: HisAK70-Salmonella Choleraesuis-pulsed Dendritic Cells
    Gustavo Domínguez-Bernal - 2017
    Here, we describe a novel approach that exploits an attenuated mutant of Salmonella enterica serovar Choleraesuis as carrier to deliver a plasmid encoding protein HisAK70. Subsequently, dendritic cells (DCs) were pulsed with this vaccine vector. The aim of this study was to evaluate the effectiveness of the prepared HisAK70-S. Choleraesuis-pulsed DCs (HisAK70-SAL DCs) against visceral leishmaniosis (VL). In our ex vivo model of infection, the prepared formulations could decrease parasite growth by up to 80% by augmenting the production of IL-12p40 and by reducing arginase activity (ARG). Also, BALB/c mice when immunised with this formulation showed significant reduction in parasite burden in both spleen (20% of reduction) and liver (75% of reduction). The balance of the immune ratios IFN-γ/IL-10, TNF-α/IL-10, and IgG2a/IgG1 reflected the acquisition of an improved resistant phenotype in HisAK70-SAL DCs vaccinated mice compared to control mice. Our results suggest that HisAK70-SAL DCs could be a promising alternative approach for vaccine delivery that has the potential to fight Leishmania infantum (L. infantum) infection.
    Biofilm formation and antibiotic resistance in Klebsiella pneumoniae urinary strains
    Claudia Vuotto - 2017
    Aims Multi-drug resistant Klebsiella pneumoniae has become a relevant healthcare-associated pathogen. Capsule, type 1 and 3 fimbriae (mrkA gene), type 2 quorum-sensing system (luxS), synthesis of D-galactan I (wbbM), LPS transport (wzm) and poly-beta-1,6-N-acetyl-D-glucosamine (pgaA) seem involved in K. pneumoniae biofilm. Non-enzymatic antibiotic resistance is related to non-expression or mutation of porins (OmpK35 and OmpK36), and efflux pump (acrB) over-expression. The aim of this study was to analyse some virulence factors of K. pneumoniae isolates, and to evaluate possible correlations between their antibiotic resistance profile and ability to form biofilm. Methods and Results Quantitative biofilm production assay, congo red agar test and string test were performed on 120 isolates clustered in 56 extensively drug resistant (XDR, 40 MDR and 24 susceptible (S)). Nine representative strains were analyzed by real-time RT-PCR for the expression of antibiotic resistance (OmpK35, OmpK36, acrB) and biofilm production genes (mrkA, luxS,, pga, wbbM, wzm) during planktonic and sessile growth. XDR isolates showed a higher ability to form biofilm (91.07%) and to produce polysaccharides (78.57%) when compared to MDR and S strains. In biofilm-growing XDR strains, 7 out of 8 genes were upregulated, with the only exception of OmpK36. Conclusions XDR strains exhibited phenotypic and genotypic features supporting a significant growth as biofilm. Significance and Impact of Study this study produces new findings that highlight a positive correlation between antibiotic resistance profile and biofilm-forming ability in XDR K. pneumoniae strains. These new evidences might contribute to the progress in selection of therapeutic treatments of infections caused by Klebsiella pneumoniae resistant also to the “last line of defense” antibiotics, i.e. carbapenems. This article is protected by copyright. All rights reserved.
    Mdm2 selectively suppresses DNA damage arising from inhibition of topoisomerase II independent of p53
    Senturk J.C. - 2017
    Mdm2 is often overexpressed in tumors that retain wild-type TP53 but may affect therapeutic response independently of p53. Herein is shown that tumor cells with MDM2 amplification are selectively resistant to treatment with topoisomerase II poisons but not other DNA damaging agents. Tumor cells that overexpress Mdm2 have reduced DNA double-strand breaks in response to doxorubicin or etoposide. This latter result is not due to altered drug uptake. The selective attenuation of DNA damage in response to these agents is dependent on both Mdm2 levels and an intact ubiquitin ligase function. These findings reveal a novel, p53-independent activity of Mdm2 and have important implications for the choice of chemotherapeutic agents in the treatment of Mdm2-overexpressing tumors.
    Click here to see all Publications

    Product Finder

    Select Your Assay

    Starting Template

    Assay Format

    Detection Chemistry

    Multiplexing (more than 3 targets)

    Is gene-specific priming (GSP) required?

    What current Reverse Transcriptase or cDNA kit are you using?

    Select the group which contains your real-time PCR cycler

    • Applied Biosystems 7500
    • Applied Biosystems 7500 Fast
    • Stratagene Mx3000P®
    • Stratagene Mx3005P™
    • Stratagene Mx4000™
    • Applied Biosystems ViiA 7
    • Applied Biosystems QuantStudio™
    • Agilent AriaMx
    • Douglas Scientific IntelliQube®
    • Applied Biosystems 5700
    • Applied Biosystems 7000
    • Applied Biosystems 7300
    • Applied Biosystems 7700
    • Applied Biosystems 7900
    • Applied Biosystems 7900HT
    • Applied Biosystems 7900 HT Fast
    • Applied Biosystems StepOne™
    • Applied Biosystems StepOnePlus™
    • Quantabio Q
    • BioRad CFX
    • Roche LightCycler 480
    • QIAGEN Rotor-Gene Q
    • Other
    • BioRad iCycler iQ™
    • BioRad MyiQ™
    • BioRad iQ™5

    Choose your application from the categories below


    I give Quantabio or an authorized Quantabio distributor permission to contact me for product updates and news.
    * Required information