

A Quick Guide to Analysis of sparQ Fast Library Quantification Data

Introduction

The purpose of this document is to describe how to view and analyze the data output by the Q-qPCR software following an amplification run using the sparQ Fast Library Quant Kit. The procedures described within are relevant to both runs set up using a template file or set up manually without template.

Examining Data in the Q-qPCR Software

Quantification data from the Q run is viewed by choosing [Absolute Quantification] in the Analysis section of the Q software. Clicking on the assay name used for the run brings up the Absolute Quantification standard curve plot. The sparQ DNA Standards are shown as Blue markers and the unknown library samples as Red markers. The diluted library values should always fall within the concentration range of the sparQ DNA standards (20 pM to 0.0002 pM) for reliable quantification.

The Standard Curve Characteristics panel gives information about efficiency and slope of the standard curve. Efficiency values above 0.90 are considered excellent.

1	Standard Curve Characteristics	
Equation: y = -3.503 x + 9.862 Efficiency: 0.9297 R ² : 0.9996	Export	

The Standard Curve Results panel gives the Cq values for each standard reaction and shows given concentration vs concentration determined using the standard curve equation.

*		Standard C	Curve Results	Ð	
Well	Given Cq Concentration (pM)		Calculated Concentration (pM)	% Variation	
⊿ Sampl	le: sparQ DNA S	tandard 1		x̄ = 20.3 σ = 0.7658	^
A6	5.21	20	21.31	6.56	1
B6	5.30	20	20.11	0.56	
C6	5.35	20	19.46	2.69	
⊿ Sampl	le: sparQ DNA S	tandard 2		$\bar{x} = 1.958 \sigma = 0.213$	
A5	8.86	2	1.935	3.24	1
B5	8.64	2	2.23	11.48	
C5	9.05	2	1.709	14.53	1
▲ Sampl	le: sparQ DNA S	tandard 3	x =	0.1973 σ = 0.01234	1
A4	12.40	0.2	0.1881	5.93	
B4	12.40	0.2	0.189	5.51	
C4	12.20	0.2	0.2147	7.37	
∡ Sampl	le: sparQ DNA S	tandard 4	$\bar{\mathbf{x}} = 0.0$	02101 σ = 0.001229	
A3	15.74	0.02	0.02094	4.68	~

The Sample Results panel gives the Cq values and concentrations of the diluted library samples calculated from the standard curve equation.

<u>.</u>		Samp	le Results	- i
Well	Cq		Calculated Concentration (pM)	
∡ Sample: Lil	brary1			$\bar{x} = 1.34 \sigma = 0.03169$
D1		9.37	1.384	10 million
E1		9.45	1.315	
F1		9.44	1.319	
▲ Sample: Lil	brary2			$\bar{x} = 2.797 \sigma = 0.1402$
D2		8.20	2.974	
E2		8.30	2.785	
F2		8.39	2.631	
▲ Sample: No	o template control			
E3				
F3				

Clicking one of the Icons at the top right side of a panel allows data to be saved to the clipboard or to a .csv file.

Sample Results	📑 🖻 🛛 🛯 👘 sparQ DNA Sta	ndard 1	o
C. L. L. L.	C6 sparQ DNA Sta	ndard 1	0
Calculated	Save the results table as a CSV file	÷.	
(pM)			

Clicking on the [Save As] icon allows all the data to be saved in an Excel Workbook

Examining Data in the Excel Workbook

The resulting Excel workbook contains multiple worksheets. The first few worksheets provide information about the run profile, samples, and assays. The next few show the raw fluorescence data for each sample at each collection point. The remaining worksheets show the normalized cycling data, Cq values, and absolute quantification results.

		ð	;				spar	Q Fast Qu	iant Run1.xl	sx - E	Excel			Æ	-		×
	ile ⊦	lome	Insert	Page Layo	ut For	mulas	Data	Review	View	Ŷ) Tell me v	vhat you want to do				Ŀ	Share
Pa	ste 💉	Calibri B I	<u>U</u> -	• 11 • ⊞ • ☆ • Font		= = = = = = Aligr	≫r • €≣ э≣ nment	ab C+ Ti	General \$ ▼ % €0 →0 Number	* 9 Fa	₹ Condi Forma Cell St	itional Formatting * at as Table * tyles * Styles	Ensert Delete Format Cells	- Σ - ♥ - ♦	Ţ Ţ Ţ Ţ Ţ Ţ Ţ Ţ Ţ Ţ Ţ Ţ Ţ Ţ Ţ Ţ Ţ Ţ Ţ		^
B	1	*	\times	$\checkmark f_X$													~
1		А									В						
1	General	Informa	tion														_
2				- /- /													_
3	File Expo	orted		5/1/2019 3:2	3:54 PM												
4	mic Solu	ware ve	rsion	1.0.0	tholp\De	(umonto)	(cnorO)	Fact NGS	Quant Ki	AIEU	and Sup		rO Fact Out	ant Pur		Fact Ou	-
5	Filo State	uc.		Completed	nuloip (bu	cuments	(sparg)	rastings	Quant Ki	L (IFO	and Sup	por civiateriais (spa		ant Kui	is (sparg	rasi Qu	
7	Operato	r		BMS-MIC													
8																	
9	mic Nam	e		Q-254													
10	mic Seria	al		M0000254													
11	mic Firm	ware		2.24													
12																	
13	Start Tim	ie		5/1/2019 12:	46:59 PM												
14	End Time	5		5/1/2019 1:2	7:37 PM												_
15																	_
16	Log			Description of	de planta			(1) 1 100									
1/	5/1/2019	12:46:5	9 PM	Run started	via Blueto	ooth on "C	1-254" S	S/N MOO	00254 F/W	v2.2	4 S/W v1	.0.0	. 1.02				
10	5/1/2019	12:51:1	3 PIVI 2 DM	Autogain con	nications	attornat	using s	ampie: 2	io, Delect	or gai	in: 1x, lei	D power: 453, Scan	2: 1.02				
20	5/1/2019	12:53:5	2 P W	Communicat	tions rest	ored	ingreu	onnectic	201								
21	5/1/2019	1:24:55	PM	Autogain co	mpleted f	for Green	using S	ample: 2	7. Detect	or gai	in: 1x. I Fl	D power: 750, Scale	e: 1.50				
22	5/1/2019	1:27:37	PM	Run complet	te				.,								
23	5/1/2019	3:23:52	PM	Cycling "spa	rQ Fast Q	uant_20ul	l" addeo	d Sample	es de-sele	cted:	D3						
24	5/1/2019	3:23:52	PM	AbsoluteQu	antificatio	n "sparQ	Fast Qu	ant_20u	I" added0	yclin	g "sparQ	Fast Quant_20ul"	added Sam	ples de	e-selecte	d: D3	
25																	
26																	
27																	_
28																	_
29																	
30																	
31																	
33																	
34																	
35																	
36																	
37																	
38																	
	< •	Ge	neral I	nformation	Profile	Sample	es 🛛 A	ssavs	Data - C	velina	Green	Data - Melt C	(+) :	4			
Rea	dv						"			9		E		-		+ 1	00%
	-,																

The Absolute Quantification worksheet shows the standard curve characteristics and plot as well as the Cq and concentration values of the diluted libraries and sparQ DNA standards.

Settings												
Target	sparQ Fa	ast Quant Assav-20ul → s	sparQ Fast Quant 20ul									
		,										
Standard Curve Result	s											
Efficiency			0.929711499)								
R ²			0.999625989)								
Gradient			-3.502720398									
Y Intercept			9.861676103									
					24	1						
					22							
					22							
					20							
					18							
			\sim		10							
					16							
5					14							
					*							
					10							
					8		and the second second					
								~				
					6							
					4							
0.0001	0.0	001	0.01	0.1		1	1	.0	100			
				Concentration								
Standards Desults												
Standards Results	Comple	Nama		Ca	Ciuco Concontratio	n (n M)	Coloulated Con	contration (nM)	9/ Mariatian		Visible Ca	Visible Cone
41	sample	NA Stopdard C		22 75 905 02	Given concentratio	0,000	Calculated Col	0.000222061	76 Valiation		22 75805021	
P1	sparQ D	NA Standard 6		22.7569595	-	0.0002		0.000222081	1 96053303		22.75695951	0.0002
C1	sparQ D	NA Standard 6		22.0482338		0.0002		0.000130073	10 57/02331		22.04825389	0.0002
A2	sparQ D	NA Standard 5		10 25522256		0.0002	0.002 0.002080722		10.37402331		19 25522256	0.0002
R2	sparQ D	NA Standard 5		19 29211/18/		0.002 0.002030		0.002030867	1 543366961		19 29211/8/	0.002
C2	sparQ D	NA Standard 5		19 44400749	r	0.002		0.002030007	8 105955409		19 44400748	0.002
A3	sparQ D	NA Standard 4		15.7431576		0.02 0.020935		0.020935426	4.677130209		15.74315766	0.02
B3	sparQ D	NA Standard 4		15.630144		0.02		0.022549985	12,74992479		15.6301443	0.02
C3	sparO D	NA Standard 4		15.8478170		0.02		0.019543501	2.282497008		15.84781701	0.02
A4	sparQ D	NA Standard 3		12.4029390		0.2		0.188143314	5.928342761		12,40293901	0.2
B4	sparQ D	NA Standard 3		12.396187	;	0.2		0.188980196	5.509901958		12.3961875	0.2
C4	sparQ D	NA Standard 3		12.201822		0.2		0.214736647	7.368323672		12.201822	0.2
A5	sparQ D	NA Standard 2		8.85739211		2		1.935153554	3.242322298		8.857392111	. 2
B5	sparQ D	NA Standard 2		8.841947184	,	2		2.229581324	11.47906622		8.841947184	2
C5	sparQ D	NA Standard 2		9.046043372	1	2		1.70945209	14.5273955		9.046043372	2
A6	sparQ D	NA Standard 1		5.30791384		20		21.31148373	6.557418672		5.30791384	20
B6	sparQ D	NA Standard 1		5.395966525	i	20		20.1129288	0.564643987		5.395966525	20
C6	sparQ D	NA Standard 1		5.385958792		20		19.46269176	2.686541195		5.385958792	20
Sample Results				-								
Well	Sample	Name		Cq	Calculated Concent	tration (pM)					Visible Cq	Visible Conc
D1	Library1			9.36705		1.384237333					9.367055	1.384237333
E1	Library1			9.445327526		1.314814086					9.445327526	1.314814086
11	Library1			9.43996879		1.319453916					9.43996879	1.319453916
52	Library2			8.20362498		2.9/4136978					8.203624989	2.974136978
52	Library2			6.303348338		2.785420131					8.303348338	2.785420131
F2 E2	Library2	alato control		6.389806904	•	2.031420891					8.389800904	2.031420891
E3	Notom	plate control										
15	NU telli											
	-											
	-										-	
	1			1								

Using the Companion Quantification Template

Due to differences in SYBR Green binding to DNA, size adjustment calculations must be performed. A longer amplicon at a lower concentration may produce the same amount of signal as a shorter amplicon at a higher concentration. The Q-qPCR does not factor the size adjustment or dilution factor into the concentrations calculations. For this reason, we provide the Companion Quantification Template.

The Companion Quantification Template for sparQ Fast Library Quant Kit includes detailed explanations on where to input data and provides guidance on how to assess the quality of the data. The first step is to input the Cq values for each sparQ DNA standard assay. This can be done manually by typing values displayed in

Quantabio

the Q-qPCR software or by copy-and-pasting values from the Absolute Quantification worksheet of the exported Excel workbook.

Compani MK-NC-0	ion Quant 002 REV. USER dat	ification To 01 ta input rec	emplate for sparQ l quired for Green ce	Fast Quant Kit				Quantabio
Step 1	- Input	Cq value	es of the stand	ards				
			Input Cq values for the standards in the appropriate highlighted cells	Move Cq values of outliers to this column	Outliers are marked "TRUE" in this column	The average Cq is calculated for the non-outliers in this column	The delta Cq values between the 10-fold standard dilutions are given in this column.	Step 1 Explanation: The first step for calculating the concentrations of the unknown libraries is to enter the Cq values for the standard curve in column D. Triplicate samples should not differ more than 0.25 Cq. Potential outliers are bibliotic to Red and metoded "TRUE" in column E. The Cq value of mu
	Std#	Conc (pM)	Ca	Outlier	Outlier test	Ανα Cα	Delta Co	nightighted in Red and marked TROE in column P. The Cd values of any
	6 6 5	0.0002 0.0002 0.0002 0.002	22.75895931 22.84825389 22.9881429 19.25522256		FALSE FALSE FALSE FALSE	22.865	3.535	outlier's should be moved to column E so they do not contribute to the calculation of average Cq in column G. As an additional quality check, the delta Cq value between dilutions is measured. Consecutive standards differ by 10-fold in concentration and should yield delta Cq values around
	5 5 4	0.002 0.002 0.02	19.29211484 19.44400748 15.74315766		FALSE FALSE FALSE	19.330	3.590	3.3. The Cq values for the no template controls (NTC) should be entered in cells D30 to D32. The delta Cq between NTCs and standard 6 should be
	4 4	0.02	15.6301443 15.84781701 12.40292901		FALSE FALSE	15.740	3.407	23 cycles.
	3	0.2	12.3961875		FALSE FALSE	12.334	3.419	GREEN cells indicate where user must input data.
	2 2 2	2 2 2	8.857392111 8.841947184 9.046043372		FALSE FALSE FALSE	8.915	3.552	
	1 1 1	20 20 20	5.30791384 5.395966525 5.385958792		FALSE FALSE FALSE	5.363		
	NTC NTC NTC	0 0				#DIV/0!	#DIV/0!	

Follow the guidelines in the explanation text box if any outliers are detected. Any delta Cq with values larger or smaller than expected could indicate poor sample handling. In such cases, it is recommended to repeat the run rather than continue with absolute quantification using an inaccurate standard curve.

The average Cq values of the replicate sparQ DNA standards are calculated and automatically populate the table in step 2, which already contains the concentration and log_{10} of the concentration values. The standard curve is plotted and another table is automatically populated with values for the slope and intercept. The slope is then used in calculation of the overall efficiency. The explanation text box for this section provides guidance on values considered acceptable for reliable absolute quantification analysis.

Unless outliers were identified and removed specifically in this companion template, the values obtained to this point should exactly match those seen in the Q-qPCR software results.

Step 3 involves entering information about the library names, average fragment sizes, and dilutions used for the absolute quantification. If the same dilution factor(s) were used for all unknown libraries in the run, the values can be entered in the upper table, which will automatically populate the dilution column of the lower table.

	Enter lib	rary dilution fact	ors below
Library	Dilution 1	10000	
Library	Dilution 2	100000	
Unknown Library	Replicate	Dilution	
1	1 2 3	10000	
	1 2 3	100000	

Alternatively, if the dilutions factors differ between the different libraries, the upper table can be left blank and the appropriate dilution factors can be entered directly in the lower chart.

Next, enter the Cq values for each library amplification reaction in the lower main chart. This can be done manually by typing values displayed in the Q-qPCR software or by copy-and-pasting values from the Absolute Quantification worksheet of the exported Excel workbook. Follow the guidelines in the text box to remove any outliers from the analysis.

Input Cq values for the libraries in the appropriate highlighted cells Cq	Move Cq values of outliers to this column Outlier	Outliers are marked "TRUE" in this column Outlier test
8.37		FALSE
8.44		FALSE
11.93		FALSE
12.18		FALSE
8.74		FALSE
8.85		FALSE
12.14		FALSE
12.21		FALSE
40.44		EALCE

The final step is to enter the average fragment sizes for each library in the appropriate cells. These values are necessary for size adjustment calculations, which utilize the following formula:

Adjusted concentration = raw concentration x avg size of library fragments

Once all information is entered, the average Cq, average raw (uncorrected) concentration (in pM), and size adjusted concentrations are automatically calculated and fill the table. Furthermore, the concentrations of the original, undiluted libraries are back-calculated using dilution factor(s) input for each sample. Values are given as pM, nM, and ng/ul and are indicated by the red arrow.

			Enter average fragment length values for the libraries in the	Input Cq values	Move Calvalues of							₽			
			appropriate	the appropriate	outliers to this	Outliers are marked					C	alculate	ed		
			highlighted cells.	highlighted cells	column	"TRUE" in this column					Con	centrat	ions		
Unknown Library	Replicate	Dilution	Average fragment length in base pairs	Cq	Outlier	Outlier test	Avg Cq	Log Conc	Avg Conc (pM)	Size- adjusted Conc (pM)	Conc of undiluted library (pM)	Conc of undiluted library (nM)	Conc of undiluted library (ng/ul)		
_	1	1 10000	10000	1 2 <i>1000</i>		8.37 8.57		FALSE FALSE	8 46	0 414435	2 596782	2 230301	22303 01	22 30301	6 8364958
	3		100	8.44		FALSE									
1	1	1	490	11.93		FALSE									
	2	100000		12.18		FALSE	12.06333	-0.61794	0.241025	0.207009	20700.94	20.70094	6.3454179		
	3			12.08		FALSE									
	1	10000		8.74		FALSE	0.70	0.220404	0 420540	1 02100	10210.0	10 2100	5 0000550		
	23			0.00		FALSE FALSE	0.70	0.320404	2.130512	1.93100	19310.0	19.3100	5.6089559		
2	1		470	12.14		FALSE				-					
	2	100000		12.21		FALSE	12.16333	-0.64659	0.225638	0.204514	20451.42	20.45142	5.9403183		
	3			12.14		FALSE									
	1			8.04		FALSE									
	2	10000		8.09		FALSE	8.113333	0.513757	3.264053	2.890825	28908.25	28.90825	8.5932078		
3	3		481	8.21		FALSE				-					
	1	400000		11.09		FALSE	11 57	0.4700	0 222727	0.205576	20557.6	20 5576	0 7060224		
	23	100000		11.52		FALSE	11.57	-0.4700	0.333131	0.200010	20001.0	23.3310	0.1002334		

The calculated concentrations provide an accurate and reliable measure for subsequent library dilutions to concentrations appropriate for input on Illumina platform flow cells.