PerfeCta® qPCR ToughMix™, Low ROX™

Cat No. 95114-250 **Size:** 250 x 20-µL reactions (2 x 1.25 mL) **Store at -25°C to -15°C protected from light**

Cat No. 95114-012 **Size:** 1250 x 20-µL reactions (10 x 1.25 mL)

Cat No. 95114-05K **Size:** 5000 x 20-µL reactions (1 x 50 mL)

Description

PerfeCta qPCR ToughMix, Low ROX is a 2X concentrated ready-to-use reaction cocktail for PCR amplification of DNA templates that overcomes many known inhibitors of PCR often present in crude samples extracted from environmental specimens, plant tissues, or animal tissues. It is a versatile and robust real-time qPCR reagent that provides maximum sensitivity and PCR efficiency with a variety of fluorogenic probe chemistries, including TaqMan® hydrolysis probes. PerfeCta qPCR ToughMix, Low ROX contains all required reaction components, except primers, probe(s), and DNA template. The light blue color of the AccuVue™ tracer dye simplifies reaction assembly in white, or clear, plates and helps to minimize pipetting or mixing errors. It does not interfere with qPCR performance or affect the stability of the product.

A key component of PerfeCta qPCR ToughMix, Low ROX is an ultra pure, highly processive thermostable DNA polymerase that is combined with high avidity monoclonal antibodies. This proprietary polymerase mix is highly resistant to PCR inhibitors and provides an extremely stringent automatic hot-start allowing reaction assembly, and temporary storage, at room temperature prior to PCR amplification. PerfeCta qPCR ToughMix, Low ROX delivers exceptional performance with either fast or conventional PCR cycling protocols.

Instrument Compatibility

Different real-time PCR systems employ different strategies for the normalization of fluorescent signals and correction of well-to-well optical variations. It is important to match the appropriate reference dye to each specific optical detection system. PerfeCta qPCR ToughMix, Low ROX contains an optimal concentration of a stabilized carboxy-X-rhodamine compound (ROX™) for instruments that use an excitation wavelength of 585 to 590 nm and 605 to 610 nm emission channel for the reference signal. Please consult our Product Finder selection tool at www.quantabio.com to find the correct product for your real-time PCR system.

Components

PerfeCta qPCR ToughMix, Low ROX (2X): 2X reaction buffer containing optimized concentrations of MgCl₂, dNTPs (dATP, dCTP, dGTP, dTTP), hot-start DNA polymerase, ROX reference dye, AccuVue blue qPCR dye, and stabilizers.

Storage and Stability

Store components in a constant temperature freezer at -25°C to -15°C protected from light upon receipt. Repeated freezing and thawing does not affect PCR performance. For lot specific expiry date, refer to package label, Certificate of Analysis or Product Specification Form.

Guidelines for qPCR:

- The design of highly specific primers and probes is a critical parameter for successful real-time PCR. The use of computer aided primer design programs is encouraged in order to minimize the potential for internal secondary structure and complementation at 3'-ends within each primer, the primer pair, and primer/probe combinations. For best results, amplicon size should be limited to 65 - 200 bp. Optimal results may require titration of primer concentration between 100 and 900 nM. A final concentration of 300 - 400 nM each primer and 100 to 250 nM probe is effective for most applications. Increasing the concentration of the primer that initiates synthesis of the target strand that is complementary to the probe can improve fluorescent signal for some primer/probe systems.

- Preparation of a reaction cocktail is recommended to reduce pipetting errors and maximize assay precision. Assemble the reaction cocktail with all required components except sample template (genomic DNA or cDNA) and dispense equal aliquots into each reaction tube. Add the DNA template to each reaction as the final step. Addition of samples as 2 to 5-µL volumes will improve assay precision.

- Suggested input quantities of template are: cDNA corresponding to 1 pg to 100 ng of total RNA; 10 pg to 1 µg genomic DNA

- After sealing each reaction, vortex gently to mix contents. Centrifuge briefly to collect components at the bottom of the reaction tube.
Reaction Assembly

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume for 20-µL rxn.</th>
<th>Final Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>PerfeCTa qPCR ToughMix, Low ROX (2X)</td>
<td>10 µL</td>
<td>1x</td>
</tr>
<tr>
<td>Forward primer</td>
<td>variable</td>
<td>100 – 900 nM</td>
</tr>
<tr>
<td>Reverse primer</td>
<td>variable</td>
<td>100 – 900 nM</td>
</tr>
<tr>
<td>Probe</td>
<td>variable</td>
<td>100 – 250 nM</td>
</tr>
<tr>
<td>Nuclease-free water</td>
<td>variable</td>
<td></td>
</tr>
<tr>
<td>Template</td>
<td>2 – 5 µL</td>
<td>variable</td>
</tr>
<tr>
<td>Final Volume (µL)</td>
<td>20 µL</td>
<td></td>
</tr>
</tbody>
</table>

Note: For smaller or larger reaction volumes scale all components proportionally.

PCR Cycling Protocol

<table>
<thead>
<tr>
<th></th>
<th>Fast 2-Step Cycling</th>
<th>Fast 3-Step Cycling</th>
<th>Standard Cycling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial denaturation:</td>
<td>95°C, 30s *</td>
<td>95°C, 30s *</td>
<td>95°C, 2-3 min *</td>
</tr>
<tr>
<td>PCR cycling (30-45 cycles):</td>
<td>95°C, 3 to 5s</td>
<td>95°C, 3 to 5s</td>
<td>95°C, 10 to 15s</td>
</tr>
<tr>
<td></td>
<td>55 to 65°C, 15s</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>60°C, 20 to 30s †</td>
<td>68 to 72°C, 10s †</td>
<td>60°C, 30 to 60s †</td>
</tr>
</tbody>
</table>

The appropriate step for fluorescent data collection varies for different probe assay formats. Data collection for 5'-nuclease probe assays (TaqMan probe) should be carried out at the end of the extension step. Use the annealing step for data collection with hybridization probe assays (HybProbe® FRET hybridization probes, Molecular Beacons, Solaris® qPCR Assays, Scorpions® primers, etc.).

End-point analysis should be carried out at a suitable temperature for your detection probe chemistry.

- Full activation of the DNA polymerase occurs within 10 seconds at 95°C; however, optimal initial denaturation time is **template dependent** and will affect qPCR efficiency and sensitivity. Amplification of genomic DNA or supercoiled plasmid DNA targets may require 5 to 10 min at 95°C to fully denature and fragment the template. Short double-stranded DNA template (PCR product) or single-stranded DNA template, such as cDNA, may require as little as 1s at 95°C. Use 30s at 95°C as a general starting point.

- Extension time is dependent upon amplicon length and the minimal data collection time requirement for your qPCR instrument. Use 30s at 60°C as a general starting point. Some assay designs and/or detection chemistries may require a 3-step cycling protocol for optimal performance. Optimal annealing temperature and time may need to be empirically determined for any given primer set and real-time instrument.

Quality Control

Kit components are free of contaminating DNase and RNase. PerfeCTa qPCR ToughMix, Low ROX is functionally tested in qPCR. Kinetic analysis must demonstrate linear resolution over six orders of dynamic range ($R^2 > 0.990$) with a 2-fold discrimination of starting template and a PCR efficiency > 95%.

Limited Label Licenses

Use of this product signifies the agreement of any purchaser or user of the product to the following terms:

1. The product may be used solely in accordance with the protocols provided with the product and this manual and for use with components contained in the kit only. QIAGEN Beverly, Inc. grants no license under any of its intellectual property to use or incorporate the enclosed components of this kit with any components not included within this kit except as described in the protocols provided with the product, this manual, and additional protocols available at www.quantabio.com. Some of these additional protocols have been provided by Quantabio product users. These protocols have not been thoroughly tested or optimized by QIAGEN Beverly, Inc. QIAGEN Beverly, Inc. neither guarantees them nor warrants that they do not infringe the rights of third-parties.

2. Other than expressly stated licenses, QIAGEN Beverly, Inc. makes no warranty that this kit and/or its use(s) do not infringe the rights of third-parties.

3. This kit and its components are licensed for one-time use and may not be reused, refurbished, or resold.

4. QIAGEN Beverly, Inc. specifically disclaims any other licenses, expressed or implied other than those expressly stated.

5. The purchaser and user of the kit agree not to take or permit anyone else to take any steps that could lead to or facilitate any acts prohibited above. QIAGEN Beverly, Inc. may enforce the prohibitions of this Limited License Agreement in any Court, and shall recover all its investigative and Court costs, including attorney fees, in any action to enforce this Limited License Agreement or any of its intellectual property rights relating to the kit and/or its components.

©2018 QIAGEN Beverly Inc. 100 Cummings Center Suite 407 J Beverly, MA 01915

Quantabio brand products are manufactured by QIAGEN, Beverly Inc.

Intended for molecular biology applications. This product is not intended for the diagnosis, prevention or treatment of a disease.

PerfeCTa, AccuVue, and ToughMix are trademarks of QIAGEN Beverly, Inc. TaqMan is a registered trademark of Roche Molecular Systems, Inc. HybProbe is a registered trademark of Roche Diagnostics GmbH. ROX is a trademark Life Technologies Corporation. Solaris is a registered trademark of Thermo Fisher Scientific Inc. Scorpions is a registered trademark of Dnx, Ltd. of Manchester, UK.